Lin Faa-Jeng, Shieh Hsin-Jang, Huang Po-Kai
Department of Electrical Engineering, National Dong Hwa University, Hualien 974, Taiwan.
IEEE Trans Neural Netw. 2006 Mar;17(2):432-44. doi: 10.1109/TNN.2005.863473.
An adaptive wavelet neural network (AWNN) control with hysteresis estimation is proposed in this study to improve the control performance of a piezo-positioning mechanism, which is always severely deteriorated due to hysteresis effect. First, the control system configuration of the piezo-positioning mechanism is introduced. Then, a new hysteretic model by integrating a modified hysteresis friction force function is proposed to represent the dynamics of the overall piezo-positioning mechanism. According to this developed dynamics, an AWNN controller with hysteresis estimation is proposed. In the proposed AWNN controller, a wavelet neural network (WNN) with accurate approximation capability is employed to approximate the part of the unknown function in the proposed dynamics of the piezo-positioning mechanism, and a robust compensator is proposed to confront the lumped uncertainty that comprises the inevitable approximation errors due to finite number of wavelet basis functions and disturbances, optimal parameter vectors, and higher order terms in Taylor series. Moreover, adaptive learning algorithms for the online learning of the parameters of the WNN are derived based on the Lyapunov stability theorem. Finally, the command tracking performance and the robustness to external load disturbance of the proposed AWNN control system are illustrated by some experimental results.
本研究提出了一种带有滞后估计的自适应小波神经网络(AWNN)控制方法,以提高压电定位机构的控制性能,该机构的性能常因滞后效应而严重恶化。首先,介绍了压电定位机构的控制系统结构。然后,通过整合修正的滞后摩擦力函数,提出了一种新的滞后模型来描述整个压电定位机构的动力学特性。基于此建立的动力学模型,提出了一种带有滞后估计的AWNN控制器。在所提出的AWNN控制器中,采用具有精确逼近能力的小波神经网络(WNN)来逼近压电定位机构动力学模型中未知函数的部分,并提出了一种鲁棒补偿器来应对集中不确定性,该不确定性包括由于小波基函数数量有限导致的不可避免的逼近误差、干扰、最优参数向量以及泰勒级数中的高阶项。此外,基于李雅普诺夫稳定性定理推导了用于WNN参数在线学习的自适应学习算法。最后,通过一些实验结果说明了所提出的AWNN控制系统的指令跟踪性能和对外部负载干扰的鲁棒性。