Arnold Arboretum, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 1986 Feb;83(4):972-5. doi: 10.1073/pnas.83.4.972.
Tissue cultures of Actinidia kolomikta can be maintained as callus through repeated passages on a nutrient medium devoid of cytokinin but containing inorganic nutrients, sucrose, and other basal organics plus auxin. Under these conditions, actively growing callus contained 2 and 0.5 nmol of the cytokinins zeatin [io(6)Ade; 6-(4-hydroxy-3-methylbut-2-enylamino)purine] and N(6)-(Delta(2)-isopentenyl)adenine (i(6)Ade), respectively, per gram (fresh weight). When tissues were transferred from cytokininless medium to 30 muM i(6)Ade, endogenous io(6)Ade increased linearly to 160 nmol/g (fresh weight) during 8 hr, and i(6)Ade increased to 5 nmol/g (fresh weight) in 2 hr and then declined. The apparent K(m) for i(6)Ade in A. kolomikta and Actinidia chinensis x Actinidia arguta callus and in tissue slices of A. arguta stems was 12 muM. In addition, the reaction(s) converting i(6)Ade to io(6)Ade was O(2)-requiring and specific for i(6)Ade versus N(6)-(Delta(2)-isopentenyl)adenosine (i(6)A). When A. kolomikta callus was fed 30 muM i(6)A, io(6)Ade increased and reached a concentration corresponding to 6 nmol/g (fresh weight) in 8 hr. Ribosylzeatin (io(6)A) did not increase. Under N(2) during i(6)A feeds, i(6)A accumulated rather than being metabolized to i(6)Ade, suggesting that i(6)A normally may be metabolized via i(6)AMP and i(6)Ade to io(6)Ade. A survey of 30 species of woody plants in 20 families of dicotyledonous angiosperms indicated that the ability to accumulate io(6)Ade (>/=10 nmol/g) in 24-hr feeds with 30 muM i(6)Ade was restricted to certain systematic groups-e.g., order Ericales, families Oleaceae and Rubiaceae. This suggests that plants may differ in their pathways for io(6)Ade biosynthesis and that cytokinin biochemistry has potential as a taxonomic character above the species and genus levels.
软枣猕猴桃组织培养物可在不含细胞分裂素但含有无机营养物、蔗糖和其他基本有机物以及生长素的营养培养基上通过反复传代作为愈伤组织维持。在这些条件下,生长活跃的愈伤组织分别含有 2 和 0.5 nmol 的细胞分裂素玉米素[io(6)Ade;6-(4-羟基-3-甲基-2-丁烯基氨基)嘌呤]和 N(6)-(Delta(2)-异戊烯基)腺嘌呤(i(6)Ade),每克(鲜重)。当组织从不含细胞分裂素的培养基转移到 30 μM i(6)Ade 时,内源性 io(6)Ade 在 8 小时内线性增加到 160 nmol/g(鲜重),2 小时内 i(6)Ade 增加到 5 nmol/g(鲜重),然后下降。软枣猕猴桃和猕猴桃属猕猴桃×软枣猕猴桃愈伤组织以及软枣猕猴桃茎组织切片的 A. kolomikta 中 i(6)Ade 的表观 K(m)为 12 μM。此外,将 i(6)Ade 转化为 io(6)Ade 的反应需要 O2,并且特异性针对 i(6)Ade 而不是 N(6)-(Delta(2)-异戊烯基)腺苷(i(6)A)。当软枣猕猴桃愈伤组织饲喂 30 μM i(6)A 时,io(6)Ade 增加,并在 8 小时内达到相当于 6 nmol/g(鲜重)的浓度。核糖基玉米素(io(6)A)没有增加。在 i(6)A 饲料期间的 N(2)下,i(6)A 积累而不是代谢为 i(6)Ade,表明 i(6)A 通常可能通过 i(6)AMP 和 i(6)Ade 代谢为 io(6)Ade。对 20 科双子叶被子植物 30 种木本植物的调查表明,在 30 μM i(6)A 的 24 小时饲料中积累 io(6)Ade(>/=10 nmol/g)的能力仅限于某些系统群,例如目石南目、科木犀科和茜草科。这表明植物在 io(6)Ade 生物合成途径上可能存在差异,并且细胞分裂素生物化学有可能成为种和属水平以上的分类特征。