Lutsko James F
Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021302. doi: 10.1103/PhysRevE.73.021302. Epub 2006 Feb 22.
The Chapman-Enskog method of solution of kinetic equations, such as the Boltzmann equation, is based on an expansion in gradients of the deviations of the hydrodynamic fields from a uniform reference state (e.g., local equilibrium). This paper presents an extension of the method so as to allow for expansions about arbitrary, far-from-equilibrium reference states. The primary result is a set of hydrodynamic equations for studying variations from the arbitrary reference state which, unlike the usual Navier-Stokes hydrodynamics, does not restrict the reference state in any way. The method is illustrated by application to a sheared granular gas which cannot be studied using the usual Navier-Stokes hydrodynamics.
求解动力学方程(如玻尔兹曼方程)的查普曼 - 恩斯科格方法,是基于流体动力学场相对于均匀参考状态(例如局部平衡)的偏差梯度展开。本文提出了该方法的一种扩展,以便能够围绕任意的、远离平衡的参考状态进行展开。主要结果是得到了一组用于研究相对于任意参考状态变化的流体动力学方程,与通常的纳维 - 斯托克斯流体动力学不同,该方程对参考状态没有任何限制。通过应用于一种无法用通常的纳维 - 斯托克斯流体动力学研究的剪切颗粒气体来说明该方法。