Suppr超能文献

寄生虫克氏锥虫在其宿主地熊蜂的蜂群内连续传代,会降低在无关宿主中的感染成功率。

Serial passage of the parasite Crithidia bombi within a colony of its host, Bombus terrestris, reduces success in unrelated hosts.

作者信息

Yourth Christopher P, Schmid-Hempel Paul

机构信息

ETH Zürich, Ecology and Evolution, ETH Zentrum CHN, CH-8092 Zürich, Switzerland.

出版信息

Proc Biol Sci. 2006 Mar 22;273(1587):655-9. doi: 10.1098/rspb.2005.3371.

Abstract

In the wild, Bombus spp. bees may contract infections of the trypanosome parasite Crithidia bombi from their nestmates or from others while foraging on contaminated flowers. We expected that as C. bombi is transmitted repeatedly among related workers within a colony, the parasite population would become more successful in this relatively homogeneous host population and less successful in individuals from unrelated colonies of the same or different species. To test our prediction, we serially passaged cocktails of C. bombi strains through workers from the same colony, taking the intensity of infection in related versus unrelated workers as a measure of parasite success at each step in the serial transfer. Using a repeated measures ANOVA, we found the ability of C. bombi to exploit Bombus spp. hosts did not increase within a colony, but did decrease for infections in workers from unrelated colonies. This reduction in success is most likely due to a gradual loss of appropriate C. bombi strains from the infecting the population as the cocktail is 'filtered' during the serial passage within a given colony, without a corresponding increase in overall intensity of the surviving strains.

摘要

在野外,熊蜂属的蜜蜂可能会在采食受污染花朵时从巢友或其他蜜蜂那里感染锥虫寄生虫克氏锥虫。我们预计,由于克氏锥虫在一个蜂群内的相关工蜂之间反复传播,寄生虫群体在这个相对同质的宿主群体中会变得更具传播性,而在来自同一或不同物种的非相关蜂群的个体中传播性会降低。为了验证我们的预测,我们将克氏锥虫菌株的混合物连续接种到来自同一蜂群的工蜂体内,以相关工蜂和非相关工蜂的感染强度作为连续转移过程中每一步寄生虫传播成功与否的衡量标准。通过重复测量方差分析,我们发现克氏锥虫感染熊蜂属宿主的能力在一个蜂群内并没有增强,但在非相关蜂群的工蜂感染中确实有所下降。这种传播成功率的降低很可能是由于在给定蜂群内连续传代过程中,随着混合物被“筛选”,感染群体中合适的克氏锥虫菌株逐渐丢失,而存活菌株的总体感染强度却没有相应增加。

相似文献

2
Few colonies of the host Bombus terrestris disproportionately affect the genetic diversity of its parasite, Crithidia bombi.
Infect Genet Evol. 2014 Jan;21:192-7. doi: 10.1016/j.meegid.2013.11.010. Epub 2013 Nov 18.
5
Infection with the trypanosome Crithidia bombi and expression of immune-related genes in the bumblebee Bombus terrestris.
Dev Comp Immunol. 2010 Jul;34(7):705-9. doi: 10.1016/j.dci.2010.02.002. Epub 2010 Feb 16.
6
Single-clone and mixed-clone infections versus host environment in Crithidia bombi infecting bumblebees.
Parasitology. 1998 Oct;117 ( Pt 4):331-6. doi: 10.1017/s0031182098003138.
10
Microbiome Structure Influences Infection by the Parasite Crithidia bombi in Bumble Bees.
Appl Environ Microbiol. 2018 Mar 19;84(7). doi: 10.1128/AEM.02335-17. Print 2018 Apr 1.

引用本文的文献

2
Methods matter: the influence of method on infection estimates of the bumblebee parasite .
Parasitology. 2023 Nov;150(13):1236-1241. doi: 10.1017/S0031182023001002. Epub 2023 Oct 20.
3
Effects of an alternative host on the prevalence and intensity of infection of a bumble bee parasite.
Parasitology. 2022 Apr;149(4):562-567. doi: 10.1017/S003118202200004X. Epub 2022 Jan 24.
5
Pathogens Spillover from Honey Bees to Other Arthropods.
Pathogens. 2021 Aug 17;10(8):1044. doi: 10.3390/pathogens10081044.
6
If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus.
PLoS One. 2020 Jan 16;15(1):e0227832. doi: 10.1371/journal.pone.0227832. eCollection 2020.
7
Genomic Variation among Strains of and .
mSphere. 2019 Sep 11;4(5):e00482-19. doi: 10.1128/mSphere.00482-19.
8
Medicinal value of sunflower pollen against bee pathogens.
Sci Rep. 2018 Sep 26;8(1):14394. doi: 10.1038/s41598-018-32681-y.
9
Bumblebee olfactory learning affected by task allocation but not by a trypanosome parasite.
Sci Rep. 2018 Apr 11;8(1):5809. doi: 10.1038/s41598-018-24007-9.
10
Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses.
PLoS One. 2016 Dec 22;11(12):e0168456. doi: 10.1371/journal.pone.0168456. eCollection 2016.

本文引用的文献

1
RAPID HOST RANGE EVOLUTION IN A POPULATION OF THE PHYTOPHAGOUS MITE TETRANYCHUS URTICAE KOCH.
Evolution. 1979 Sep;33(3):791-802. doi: 10.1111/j.1558-5646.1979.tb04735.x.
2
VIRULENCE.
Evolution. 1994 Oct;48(5):1423-1437. doi: 10.1111/j.1558-5646.1994.tb02185.x.
3
DYNAMIC AND GENETIC CONSEQUENCES OF VARIATION IN HORIZONTAL TRANSMISSION FOR A MICROPARASITIC INFECTION.
Evolution. 1999 Apr;53(2):426-434. doi: 10.1111/j.1558-5646.1999.tb03778.x.
4
Sex against virulence: the coevolution of parasitic diseases.
Trends Ecol Evol. 1996 Feb;11(2):79-82. doi: 10.1016/0169-5347(96)81047-0.
7
Specific versus nonspecific immune defense in the bumblebee, Bombus terrestris L.
Evolution. 2003 Jun;57(6):1444-7. doi: 10.1111/j.0014-3820.2003.tb00351.x.
8
Timing of transmission and the evolution of virulence of an insect virus.
Proc Biol Sci. 2002 Jun 7;269(1496):1161-5. doi: 10.1098/rspb.2002.1976.
9
Within-host population dynamics and the evolution of microparasites in a heterogeneous host population.
Evolution. 2002 Feb;56(2):213-23. doi: 10.1111/j.0014-3820.2002.tb01332.x.
10
Evolution of virulence in a heterogeneous host population.
Evolution. 2000 Feb;54(1):64-71. doi: 10.1111/j.0014-3820.2000.tb00008.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验