Suppr超能文献

贝叶斯孟德尔:用于孟德尔风险预测的R环境。

BayesMendel: an R environment for Mendelian risk prediction.

作者信息

Chen Sining, Wang Wenyi, Broman Karl W, Katki Hormuzd A, Parmigiani Giovanni

机构信息

The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, USA.

出版信息

Stat Appl Genet Mol Biol. 2004;3:Article21. doi: 10.2202/1544-6115.1063. Epub 2004 Sep 17.

Abstract

Several important syndromes are caused by deleterious germline mutations of individual genes. In both clinical and research applications it is useful to evaluate the probability that an individual carries an inherited genetic variant of these genes, and to predict the risk of disease for that individual, using information on his/her family history. Mendelian risk prediction models accomplish these goals by integrating Mendelian principles and state-of-the-art statistical models to describe phenotype/genotype relationships. Here we introduce an R library called BayesMendel that allows implementation of Mendelian models in research and counseling settings. BayesMendel is implemented in an object-oriented structure in the language R and distributed freely as an open source library. In its first release, it includes two major cancer syndromes: the breast-ovarian cancer syndrome and the hereditary non-polyposis colorectal cancer syndrome, along with up-to-date estimates of penetrance and prevalence for the corresponding genes. Input genetic parameters can be easily modified by users. BayesMendel can also serve as a generic tool for genetic epidemiologists to flexibly implement their own Mendelian models for novel syndromes and local subpopulations, without reprogramming complex statistical analyses and prediction tools.

摘要

几种重要的综合征是由单个基因的有害种系突变引起的。在临床和研究应用中,利用个体的家族史信息来评估其携带这些基因的遗传变异的概率,并预测该个体的疾病风险是很有用的。孟德尔风险预测模型通过整合孟德尔原理和最先进的统计模型来描述表型/基因型关系,从而实现这些目标。在这里,我们介绍一个名为BayesMendel的R库,它允许在研究和咨询环境中实现孟德尔模型。BayesMendel是用R语言以面向对象的结构实现的,并作为一个开源库免费分发。在其第一个版本中,它包括两种主要的癌症综合征:乳腺癌-卵巢癌综合征和遗传性非息肉病性结直肠癌综合征,以及相应基因的最新外显率和患病率估计值。用户可以轻松修改输入的遗传参数。BayesMendel还可以作为遗传流行病学家的通用工具,以便灵活地为新的综合征和当地亚人群实现他们自己的孟德尔模型,而无需重新编写复杂的统计分析和预测工具。

相似文献

1
BayesMendel: an R environment for Mendelian risk prediction.
Stat Appl Genet Mol Biol. 2004;3:Article21. doi: 10.2202/1544-6115.1063. Epub 2004 Sep 17.
5
Statistical methods for Mendelian models with multiple genes and cancers.
Genet Epidemiol. 2022 Oct;46(7):395-414. doi: 10.1002/gepi.22460. Epub 2022 May 18.
6
Recent Enhancements to the Genetic Risk Prediction Model BRCAPRO.
Cancer Inform. 2015 May 10;14(Suppl 2):147-57. doi: 10.4137/CIN.S17292. eCollection 2015.
7
Prediction of germline mutations and cancer risk in the Lynch syndrome.
JAMA. 2006 Sep 27;296(12):1479-87. doi: 10.1001/jama.296.12.1479.
8
Providing access to risk prediction tools via the HL7 XML-formatted risk web service.
Breast Cancer Res Treat. 2013 Jul;140(1):187-93. doi: 10.1007/s10549-013-2605-z. Epub 2013 Jun 23.
9
Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history.
J Natl Cancer Inst. 1997 Feb 5;89(3):227-38. doi: 10.1093/jnci/89.3.227.
10
Practical implementation of frailty models in Mendelian risk prediction.
Genet Epidemiol. 2020 Sep;44(6):564-578. doi: 10.1002/gepi.22323. Epub 2020 Jun 7.

引用本文的文献

1
Hereditary Cancer Genetic Testing: 30 Years of Impact on Cancer Care.
Dela J Public Health. 2024 Aug 28;10(3):16-20. doi: 10.32481/djph.2024.08.06. eCollection 2024 Aug.
2
Identifying somatic fingerprints of cancers defined by germline and environmental risk factors.
Genet Epidemiol. 2024 Dec;48(8):455-467. doi: 10.1002/gepi.22565. Epub 2024 Apr 30.
4
PREDICTION OF HEREDITARY CANCERS USING NEURAL NETWORKS.
Ann Appl Stat. 2022 Mar;16(1):495-520. doi: 10.1214/21-aoas1510. Epub 2022 Mar 28.
5
Combining Breast Cancer Risk Prediction Models.
Cancers (Basel). 2023 Feb 8;15(4):1090. doi: 10.3390/cancers15041090.
6
A validation of models for prediction of pathogenic variants in mismatch repair genes.
Genet Med. 2022 Oct;24(10):2155-2166. doi: 10.1016/j.gim.2022.07.004. Epub 2022 Aug 23.
7
Statistical methods for Mendelian models with multiple genes and cancers.
Genet Epidemiol. 2022 Oct;46(7):395-414. doi: 10.1002/gepi.22460. Epub 2022 May 18.
8
Predicting cancer risk based on family history.
Elife. 2021 Sep 29;10:e73380. doi: 10.7554/eLife.73380.
10
Assessing Risk of Breast Cancer: A Review of Risk Prediction Models.
J Breast Imaging. 2021 Feb 19;3(2):144-155. doi: 10.1093/jbi/wbab001. eCollection 2021 Mar-Apr.

本文引用的文献

2
Evaluation of widely used models for predicting BRCA1 and BRCA2 mutations.
J Med Genet. 2004 Apr;41(4):278-85. doi: 10.1136/jmg.2003.013623.
3
Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2.
Science. 2003 Oct 24;302(5645):643-6. doi: 10.1126/science.1088759.
6
Understanding mathematical models for breast cancer risk assessment and counseling.
Breast J. 2001 Jul-Aug;7(4):224-32. doi: 10.1046/j.1524-4741.2001.20012.x.
8
Human disease genes.
Nature. 2001 Feb 15;409(6822):853-5. doi: 10.1038/35057050.
10
Risk models for familial ovarian and breast cancer.
Genet Epidemiol. 2000 Feb;18(2):173-90. doi: 10.1002/(SICI)1098-2272(200002)18:2<173::AID-GEPI6>3.0.CO;2-R.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验