Suppr超能文献

高频边缘(而非对比度)可预测我们的注视位置:贝叶斯系统识别分析。

High frequency edges (but not contrast) predict where we fixate: A Bayesian system identification analysis.

作者信息

Baddeley Roland J, Tatler Benjamin W

机构信息

Department of Experimental Psychology, University of Bristol 8, Woodland Road, Bristol, UK.

出版信息

Vision Res. 2006 Sep;46(18):2824-33. doi: 10.1016/j.visres.2006.02.024. Epub 2006 May 2.

Abstract

A Bayesian system identification technique was used to determine which image characteristics predict where people fixate when viewing natural images. More specifically an estimate was derived for the mapping between image characteristics at a given location and the probability that this location was fixated. Using a large database of eye fixations to natural images, we determined the most probable (a posteriori) model of this mapping. From a set of candidate feature maps consisting of edge, contrast and luminance maps (at two different spatial scales), fixation probability was dominated by high spatial frequency edge information. The best model applied compressive non-linearity to the high frequency edge detecting filters (approximately a square root). Both low spatial frequency edges and contrast had weaker, but inhibitory, effects. The contributions of the other maps were so small as to be behaviourally irrelevant. This Bayesian method identifies not only the relevant weighting of the different maps, but how this weighting varies as a function of distance from the point of fixation. It was found that rather than centre surround inhibition, the weightings simply averaged over an area of about 2 degrees.

摘要

一种贝叶斯系统识别技术被用于确定在观看自然图像时,哪些图像特征能够预测人们的注视位置。更具体地说,得出了给定位置的图像特征与该位置被注视的概率之间映射关系的估计值。利用一个包含对自然图像眼动注视的大型数据库,我们确定了这种映射关系的最可能(后验)模型。在由边缘、对比度和亮度图(在两种不同空间尺度下)组成的一组候选特征图中,注视概率主要由高空间频率边缘信息主导。最佳模型对高频边缘检测滤波器应用了压缩非线性(近似为平方根)。低空间频率边缘和对比度的影响较弱,但具有抑制作用。其他图的贡献小到在行为上无关紧要。这种贝叶斯方法不仅识别了不同图的相关权重,还识别了这种权重如何随距注视点的距离而变化。结果发现,权重并非进行中心环绕抑制,而是简单地在大约2度的区域上进行平均。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验