Suppr超能文献

大豆叶片衰老过程中光合作用及其他与叶绿体数量相关的性状

Photosynthesis and Other Traits in Relation to Chloroplast Number during Soybean Leaf Senescence.

作者信息

Ford D M, Shibles R

机构信息

Department of Agronomy, Iowa State University, Ames, Iowa 50011.

出版信息

Plant Physiol. 1988 Jan;86(1):108-11. doi: 10.1104/pp.86.1.108.

Abstract

Soon after attaining full expansion, soybean (Glycine max [L.] Merr.) leaves enter a senescence phase marked by decline in photosynthetic rate and the progressive loss of chloroplast activity and composition. Our primary goal was to determine if this loss could be accounted for by sequential degradation of whole chloroplasts or by simultaneous degeneration of all chloroplasts. Total photosynthesis (TPs) measured as (14)CO(2) uptake, chloroplast number, ribulose 1,5-bisphosphate carboxylase activity, uncoupled photosynthetic electron transport activity, soluble protein content, and chlorophyll content declined progressively during the 37 days after full leaf expansion. During this period, chloroplast number per unit leaf area was constant for all genotypes studied. We conclude that leaf senescence may be a two-stage process wherein the first stage chloroplast activity and composition declines, but chloroplast numbers do not change. During a brief terminal stage (11 days in our experiment), whole chloroplasts may be lost as well. As a second objective we wished to determine if variation in single-leaf total photosynthetic rate among soybean cultivars is related to corresponding variation in chloroplast number and/or chloroplast activity/composition. By comparing the means for three cultivars known to have rapid leaf TPs and for the three known to have slow TPs, we found the former group to be superior to the latter for all the previously mentioned leaf physiological traits. This superiority was related primarily to differences in chloroplast number and only secondarily to differences in activity and composition per chloroplast.

摘要

大豆(Glycine max [L.] Merr.)叶片完全展开后不久,便进入衰老阶段,其特征为光合速率下降以及叶绿体活性和组成成分逐渐丧失。我们的主要目标是确定这种丧失是由于整个叶绿体的顺序降解,还是所有叶绿体同时退化所致。以(14)CO₂吸收量衡量的总光合作用(TPs)、叶绿体数量、核酮糖1,5 - 二磷酸羧化酶活性、非偶联光合电子传递活性、可溶性蛋白质含量和叶绿素含量在叶片完全展开后的37天内逐渐下降。在此期间,所有研究基因型的单位叶面积叶绿体数量保持恒定。我们得出结论,叶片衰老可能是一个两阶段过程,其中第一阶段叶绿体活性和组成成分下降,但叶绿体数量不变。在一个短暂的末期阶段(在我们的实验中为11天),整个叶绿体也可能会丧失。作为第二个目标,我们希望确定大豆品种中单叶总光合速率的差异是否与叶绿体数量和/或叶绿体活性/组成的相应差异有关。通过比较已知具有快速叶片TPs的三个品种和已知具有缓慢TPs的三个品种的平均值,我们发现前一组在所有上述叶片生理特征方面均优于后一组。这种优势主要与叶绿体数量的差异有关,其次才与每个叶绿体的活性和组成成分的差异有关。

相似文献

引用本文的文献

1
Gene Is a Positive Regulator in Plant Drought Stress Tolerance.
Biology (Basel). 2024 Jul 23;13(8):552. doi: 10.3390/biology13080552.
3
iTRAQ-based analysis of developmental dynamics in the soybean leaf proteome reveals pathways associated with leaf photosynthetic rate.
Mol Genet Genomics. 2016 Aug;291(4):1595-605. doi: 10.1007/s00438-016-1202-3. Epub 2016 Apr 5.
6
Photosynthesis of individual field-grown cotton leaves during ontogeny.
Photosynth Res. 1990 Feb;23(2):163-70. doi: 10.1007/BF00035007.
7
Photosynthesis-related quantities for education and modeling.
Photosynth Res. 2013 Nov;117(1-3):1-30. doi: 10.1007/s11120-013-9945-8. Epub 2013 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验