Suppr超能文献

开花前后相对于棉花生殖体脱落率的变化,脱落酸和吲哚乙酸的变化。

Changes in Abscisic Acid and Indoleacetic Acid before and after Anthesis Relative to Changes in Abscission Rates of Cotton Fruiting Forms.

机构信息

United States Department of Agriculture, Agricultural Research Service, Phoenix, Arizona 85040.

出版信息

Plant Physiol. 1988 Jul;87(3):629-31. doi: 10.1104/pp.87.3.629.

Abstract

Cotton (Gossypium hirsutum L.) fruiting forms exhibit pronounced changes, with age, in their probability of abscission. Large floral buds rarely abscise, but after anthesis the young fruits (bolls) have a high probability of abscising. Abscission rate reaches a peak about 5 to 6 days after anthesis and then gradually decreases. An experiment was conducted to try to determine the reason for the rapid and pronounced increase in probability of abscission just after anthesis. Cotton was grown in the field and fruiting forms of various ages from 9 days before to 9 days after anthesis were all harvested the same day and subsequently analyzed for ABA and IAA. The concentration of ABA decreased slightly at anthesis and increased gradually thereafter. In contrast, the concentration of IAA was high before anthesis and then decreased at anthesis to about one-fifth the previous concentration. IAA remained low for at least 4 days after anthesis and then increased rapidly between 7 and 9 days after anthesis. The high concentration of IAA in floral buds before anthesis is probably a major factor in their resistance to abscission. Likewise, the low concentration of IAA at anthesis and for about 4 days thereafter may promote fruit abscission during the young boll stage.

摘要

棉花(Gossypium hirsutum L.)果实形态随着年龄的增长表现出明显的脱落变化。大的花蕾很少脱落,但在开花后,幼果(棉铃)有很高的脱落概率。脱落率在开花后约 5 至 6 天达到峰值,然后逐渐下降。进行了一项实验,试图确定开花后不久脱落概率迅速显著增加的原因。棉花在田间生长,从开花前 9 天到开花后 9 天的各种果实形态都在同一天收获,并随后分析了 ABA 和 IAA 的含量。ABA 的浓度在开花时略有下降,此后逐渐增加。相比之下,IAA 的浓度在开花前较高,然后在开花时下降到之前浓度的约五分之一。IAA 在开花后至少 4 天内保持低水平,然后在开花后 7 至 9 天内迅速增加。开花前花蕾中高浓度的 IAA 可能是其抗脱落的主要因素。同样,开花时和随后约 4 天内的低 IAA 浓度可能会促进幼铃阶段的果实脱落。

相似文献

7
Abscisic Acid and cutout in cotton.
Plant Physiol. 1985 Jan;77(1):16-20. doi: 10.1104/pp.77.1.16.
10
Ethylene, a regulator of young fruit abscission.
Plant Physiol. 1973 May;51(5):949-53. doi: 10.1104/pp.51.5.949.

引用本文的文献

1
Analysis of the MIR160 gene family and the role of MIR160a_A05 in regulating fiber length in cotton.
Planta. 2019 Dec;250(6):2147-2158. doi: 10.1007/s00425-019-03271-7. Epub 2019 Oct 16.
2
A Pivotal Role of Hormones in Regulating Cotton Fiber Development.
Front Plant Sci. 2019 Feb 14;10:87. doi: 10.3389/fpls.2019.00087. eCollection 2019.
3
A genome-wide analysis of the small auxin-up RNA (SAUR) gene family in cotton.
BMC Genomics. 2017 Oct 23;18(1):815. doi: 10.1186/s12864-017-4224-2.
5
Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality.
Nat Biotechnol. 2011 May;29(5):453-8. doi: 10.1038/nbt.1843. Epub 2011 Apr 10.
7
Gene expression changes and early events in cotton fibre development.
Ann Bot. 2007 Dec;100(7):1391-401. doi: 10.1093/aob/mcm232. Epub 2007 Sep 27.
9
Abscisic Acid Levels during Early Seed Development in Sechium edule Sw.
Plant Physiol. 1989 Dec;91(4):1351-5. doi: 10.1104/pp.91.4.1351.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验