The Rockefeller University, New York, New York 10021.
Plant Physiol. 1990 Sep;94(1):278-83. doi: 10.1104/pp.94.1.278.
Pulsed, time resolved photoacoustics has sufficient sensitivity to determine oxygen emission and uptake by single turnover flashes to leaves. The advantage over previous methodologies is that when combined with single turnover flashes the kinetics of the thermal and the gas signals can be resolved to 0.1 millisecond and separated. The S-state oscillations of oxygen formation are readily observed. The gas signal from common spongy leaves such as spinach (Spinacia sp.), Japanese andromeda (Pieris japonica), mock orange (Philadelphus coronarius) and viburnum (Viburnum tomentosum), after correction for instrumental rise time, show a lag of only 1 millisecond and a rise time of 5 milliseconds in the formation of oxygen. Thus a recent proposal that the formation of oxygen requires over 100 milliseconds cannot be true for choroplasts in vivo. The rapid emission is correlated with structure of the leaf. At low light flash energies a rapid gas uptake is observed. The uptake has slightly slower kinetics than oxygen evolution, and its magnitude increases with damage to the leaf. The pulse methodology shows that the uptake begins with the very first flash after dark adaption, and allows the detection of a positive signal (oxygen) on the third flash. These observations, the long wavelength of excitation (695 nanometers) and the magnitude of the signal support the contention that the gas uptake is oxygen reduction by electrons from photosystem I. These results show that important physiological aspects of a leaf can be studied by pulsed, time resolved photoacoustics.
脉冲时间分辨光声法具有足够的灵敏度,可用于测定单周转闪光过程中叶子的氧释放和摄取。与以前的方法相比,其优势在于,当与单周转闪光结合使用时,热信号和气体信号的动力学可以分辨到 0.1 毫秒,并可以分离。氧形成的 S 态振荡很容易观察到。经过仪器上升时间校正后,来自普通海绵状叶子(如菠菜(Spinacia sp.)、日本石楠(Pieris japonica)、假橙(Philadelphus coronarius)和荚蒾(Viburnum tomentosum)的气体信号仅滞后 1 毫秒,形成氧气的上升时间为 5 毫秒。因此,最近关于氧形成需要超过 100 毫秒的提议对于活体叶绿体来说是不正确的。快速发射与叶子的结构有关。在低光闪光能量下,观察到快速气体摄取。摄取的动力学比氧气演化稍慢,其幅度随着叶子的损伤而增加。脉冲方法表明,在暗适应后的第一次闪光后,摄取就开始了,并且可以在第三次闪光时检测到正信号(氧气)。这些观察结果、长波长激发(695 纳米)和信号的幅度支持这样的观点,即气体摄取是由来自光系统 I 的电子还原氧气。这些结果表明,脉冲时间分辨光声法可以研究叶子的重要生理方面。