Rasmusson A G, Møller I M
Department of Plant Physiology, University of Lund, Box 7007, S-220 07 Lund, Sweden.
Plant Physiol. 1990 Nov;94(3):1012-8. doi: 10.1104/pp.94.3.1012.
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD(+)- and NADP(+)-isocitrate dehydrogenases, NAD(+)- and NADP(+)-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP(+)-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP(+)-malate dehydrogenase activity is probably due to unspecificity of the NAD(+)-malate dehydrogenase. NADP(+)-specific isocitrate dehydrogenase had much lower K(m)s for NADP(+) and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD(+)-specific enzyme (101 micromolar for NAD(+) and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP(+)-specific isocitrate dehydrogenase whereas the NAD(+)-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP(+) stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP(+) is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP(+)-reducing activities of malate dehydrogenase and the NADP(+)-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.
纯化的马铃薯块茎(马铃薯品种宾铁)线粒体含有可溶性、高度潜伏的NAD(+) - 和NADP(+) - 异柠檬酸脱氢酶、NAD(+) - 和NADP(+) - 苹果酸脱氢酶,以及一种NADPH特异性谷胱甘肽还原酶(分别为每分钟每毫克蛋白质160、25、7200、160和16纳摩尔NAD(P)H)。两种异柠檬酸脱氢酶活性,而非两种苹果酸脱氢酶活性,可通过硫酸铵沉淀分离。因此,NADP(+) - 异柠檬酸脱氢酶活性归因于一种单独的基质酶,而NADP(+) - 苹果酸脱氢酶活性可能归因于NAD(+) - 苹果酸脱氢酶的非特异性。NADP(+) - 特异性异柠檬酸脱氢酶对NADP(+)和异柠檬酸的米氏常数(Km)(分别为5.1和10.7微摩尔)远低于NAD(+) - 特异性酶(对NAD(+)为101微摩尔,对异柠檬酸为184微摩尔)。NADP(+) - 特异性异柠檬酸脱氢酶在pH 7.4至9.0范围内有较宽的活性最佳值,而NAD(+) - 特异性酶在pH 7.8时有一个尖锐的最佳值。在外部NADPH氧化受到抑制的条件下,外部添加的NADP(+)刺激完整线粒体的异柠檬酸和苹果酸氧化。这表明:(a) NADP(+)通过线粒体内膜被摄取到基质中,以及(b) 基质中苹果酸脱氢酶和NADP(+) - 特异性异柠檬酸脱氢酶的NADP(+)还原活性可有助于完整植物线粒体中的电子传递。结合其他已知的线粒体NADP(H)利用酶,讨论了线粒体NADP(H)和可溶性NADP(H)消耗酶的生理相关性。