Suppr超能文献

本体感受器的数学模型。II. 高尔基腱器官的结构与功能。

Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ.

作者信息

Mileusnic Milana P, Loeb Gerald E

机构信息

Department of Biomedical Engineering, Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA 90089-1112, USA.

出版信息

J Neurophysiol. 2006 Oct;96(4):1789-802. doi: 10.1152/jn.00869.2005. Epub 2006 May 3.

Abstract

We developed a physiologically realistic mathematical model of the Golgi tendon organ (GTO) whose elements correspond to anatomical features of the biological receptor. The mechanical interactions of these elements enable it to capture all salient aspects of GTO afferent behavior reported in the literature. The model accurately describes the GTO's static and dynamic responses to activation of single motor units whose muscle fibers insert into the GTO, including the different static and dynamic sensitivities that exist for different types of muscle fibers (S, FR, and FF). Furthermore, it captures the phenomena of self- and cross-adaptation wherein the GTO dynamic response during motor unit activation is reduced by prior activation of the same or a different motor unit, respectively. The model demonstrates various degrees of nonlinear summation of GTO responses resulting from simultaneous activation of multiple motor units. Similarly to the biological GTO, the model suggests that the activation of every additional motor unit to already active motor units that influence the receptor will have a progressively weaker incremental effect on the GTO afferent activity. Finally, the proportional relationship between the cross-adaptation and summation recorded for various pairs of motor units was captured by the model, but only by incorporating a particular type of occlusion between multiple transduction regions that were previously suggested. This occlusion mechanism is consistent with the anatomy of the afferent innervation and its arrangement with respect to the collagen strands inserting into the GTO.

摘要

我们构建了一个生理上逼真的高尔基腱器官(GTO)数学模型,其元件对应于生物感受器的解剖特征。这些元件的机械相互作用使其能够捕捉文献中报道的GTO传入行为的所有显著方面。该模型准确描述了GTO对单个运动单位激活的静态和动态反应,这些运动单位的肌纤维插入到GTO中,包括不同类型肌纤维(慢肌纤维、快疲劳肌纤维和快非疲劳肌纤维)存在的不同静态和动态敏感性。此外,它还捕捉了自我适应和交叉适应现象,其中在运动单位激活期间,GTO的动态反应分别因相同或不同运动单位的先前激活而降低。该模型展示了多个运动单位同时激活导致的GTO反应的不同程度的非线性总和。与生物GTO类似,该模型表明,对于已经激活并影响感受器的运动单位,每增加一个运动单位的激活对GTO传入活动的增量效应将逐渐减弱。最后,该模型捕捉了不同运动单位对之间记录的交叉适应和总和之间的比例关系,但这仅通过纳入先前提出的多个转导区域之间的特定类型的阻塞来实现。这种阻塞机制与传入神经支配的解剖结构及其相对于插入GTO的胶原纤维束的排列是一致的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验