Suppr超能文献

细菌视紫红质(bR)作为一种电子传导介质:电流通过含bR单分子层的传输。

Bacteriorhodopsin (bR) as an electronic conduction medium: current transport through bR-containing monolayers.

作者信息

Jin Yongdong, Friedman Noga, Sheves Mordechai, He Tao, Cahen David

机构信息

Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8601-6. doi: 10.1073/pnas.0511234103. Epub 2006 May 26.

Abstract

Studying electron transport (ET) through proteins is hampered by achieving reproducible experimental configurations, particularly electronic contacts to the proteins. The transmembrane protein bacteriorhodopsin (bR), a natural light-activated proton pump in purple membranes of Halobacterium salinarum, is well studied for biomolecular electronics because of its sturdiness over a wide range of conditions. To date, related studies of dry bR systems focused on photovoltage generation and photoconduction with multilayers, rather than on the ET ability of bR, which is understandable because ET across 5-nm-thick, apparently insulating membranes is not obvious. Here we show that electronic current passes through bR-containing artificial lipid bilayers in solid "electrode-bilayer-electrode" structures and that the current through the protein is more than four orders of magnitude higher than would be estimated for direct tunneling through 5-nm, water-free peptides. We find that ET occurs only if retinal or a close analogue is present in the protein. As long as the retinal can isomerize after light absorption, there is a photo-ET effect. The contribution of light-driven proton pumping to the steady-state photocurrents is negligible. Possible implications in view of the suggested early evolutionary origin of halobacteria are noted.

摘要

通过蛋白质研究电子传输(ET)受到可重复实验配置的阻碍,特别是与蛋白质的电子接触。跨膜蛋白细菌视紫红质(bR)是盐生盐杆菌紫色膜中的一种天然光激活质子泵,因其在广泛条件下的稳定性而在生物分子电子学方面得到了充分研究。迄今为止,干燥bR系统的相关研究集中在多层膜的光电压产生和光电导上,而不是bR的ET能力,这是可以理解的,因为穿过5纳米厚、明显绝缘的膜的ET并不明显。在这里,我们表明电子电流通过固体“电极-双层-电极”结构中含bR的人工脂质双层,并且通过蛋白质的电流比通过5纳米无水电肽的直接隧穿估计值高四个数量级以上。我们发现只有当蛋白质中存在视黄醛或其紧密类似物时才会发生ET。只要视黄醛在光吸收后能够异构化,就会有光ET效应。光驱动质子泵对稳态光电流的贡献可以忽略不计。文中指出了鉴于盐杆菌推测的早期进化起源可能产生的影响。

相似文献

1
Bacteriorhodopsin (bR) as an electronic conduction medium: current transport through bR-containing monolayers.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8601-6. doi: 10.1073/pnas.0511234103. Epub 2006 May 26.
2
X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution.
Sci Rep. 2018 Sep 3;8(1):13123. doi: 10.1038/s41598-018-31370-0.
3
Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching.
J Phys Chem B. 2012 Jun 28;116(25):7455-62. doi: 10.1021/jp2112846. Epub 2012 Apr 30.
4
Culture temperature affects the molecular motion of bacteriorhodopsin within the purple membrane.
Chem Pharm Bull (Tokyo). 1996 Mar;44(3):473-6. doi: 10.1248/cpb.44.473.
6
Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches.
Nano Lett. 2019 May 8;19(5):3104-3114. doi: 10.1021/acs.nanolett.9b00512. Epub 2019 Apr 17.
7
Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation.
Annu Rev Biochem. 2019 Jun 20;88:59-83. doi: 10.1146/annurev-biochem-013118-111327. Epub 2019 Apr 3.
9
Potential applications of bacteriorhodopsin mutants.
Bioengineered. 2012 Nov-Dec;3(6):326-8. doi: 10.4161/bioe.21445. Epub 2012 Aug 16.

引用本文的文献

1
An Infrared Nanospectroscopy Technique for the Study of Electric-Field-Induced Molecular Dynamics.
Nano Lett. 2024 Aug 14;24(32):9808-9815. doi: 10.1021/acs.nanolett.4c01387. Epub 2024 Aug 1.
5
Structurally modified bacteriorhodopsin as an efficient bio-sensitizer for solar cell applications.
Eur Biophys J. 2019 Jan;48(1):61-71. doi: 10.1007/s00249-018-1331-1. Epub 2018 Sep 3.
6
Spin-dependent electron transport in protein-like single-helical molecules.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11658-62. doi: 10.1073/pnas.1407716111. Epub 2014 Jul 28.
7
Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane.
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14872-6. doi: 10.1073/pnas.1311493110. Epub 2013 Aug 26.
8
Microscopic modeling of charge transport in sensing proteins.
Nanoscale Res Lett. 2012 Jun 22;7(1):340. doi: 10.1186/1556-276X-7-340.
9
Porphyrins as Molecular Electronic Components of Functional Devices.
Coord Chem Rev. 2010 Oct 1;254(19-20):2297-2310. doi: 10.1016/j.ccr.2010.05.014.

本文引用的文献

1
Surface plasmon resonance-mediated colloid gold monolayer junctions.
J Am Chem Soc. 2005 Aug 31;127(34):11902-3. doi: 10.1021/ja052896j.
2
Assigning protonation patterns in water networks in bacteriorhodopsin based on computed IR spectra.
Angew Chem Int Ed Engl. 2004 Sep 13;43(36):4804-7. doi: 10.1002/anie.200453857.
3
X-ray diffraction of bacteriorhodopsin photocycle intermediates.
Mol Membr Biol. 2004 May-Jun;21(3):143-50. doi: 10.1080/09687680410001666345.
4
Conductance titration of single-peptide molecules.
J Am Chem Soc. 2004 May 5;126(17):5370-1. doi: 10.1021/ja049469a.
5
Thermally activated conduction in molecular junctions.
J Am Chem Soc. 2004 Apr 7;126(13):4052-3. doi: 10.1021/ja039015y.
6
Measurement of single-molecule resistance by repeated formation of molecular junctions.
Science. 2003 Aug 29;301(5637):1221-3. doi: 10.1126/science.1087481.
7
Light-induced hydrolysis and rebinding of nonisomerizable bacteriorhodopsin pigment.
Biophys J. 2002 May;82(5):2617-26. doi: 10.1016/S0006-3495(02)75603-8.
8
Transient absorption and photovoltage study of' self-assembled bacteriorhodopsin/polycation multilayer films.
Biosens Bioelectron. 2002 Jun;17(6-7):509-15. doi: 10.1016/s0956-5663(02)00007-6.
10
Proton-coupled electron transfer of cytochrome c.
J Am Chem Soc. 2001 May 2;123(17):4062-8. doi: 10.1021/ja004165j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验