Tamulis A, Tamulis V, Graja A
Vilnius University Institute of Theoretical Physics and Astronomy, Lithuania.
J Nanosci Nanotechnol. 2006 Apr;6(4):965-73. doi: 10.1166/jnn.2006.168.
In order to support the creation of both artificial living organisms in the USA LANL "Protocell Assembly" project and programmable nano-biorobots in the EU "Programmable Artificial Cell Evolution" project, we used quantum mechanical (QM), density functional theory (DFT), the semiempirical PM3 method, and molecular mechanics (MM) software to investigate various complex photosynthetic systems based on peptide nucleic acid (PNA) in a water environment. Quantum mechanical DFT PBEPBE simulations, including electron correlations, confirm that water molecules that surround all the photosynthetic complex of the LANL protoorganism are main constructing factors and stabilize this system consisting of: PNA fragment attached by covalent bond sensitizer 1,4-bis(N,N-dimethylamino)naphthalene molecule, lipid precursor molecule and fragment of lipid molecules mono layer. The absorption spectrum shift to the red wavelengths in the complex artificial protocell photosynthetic center might be used as the measure of the complexity of this system. The electron pi-pi* transitions in the first and third excited states are from HOMO and HOMO-1 located on the conjugated water molecules and sensitizer 1,4-bis(N,N-dimethylamino)naphthalene molecule to the LUMO of the lipid precursor molecule as calculated using the time dependent (TD) PBEPBE/6-31G model. Electron charge tunneling in the first and third excited states should induce metabolic photodissociation of the lipid precursor molecule because of localization of the transferred electron cloud on the head (waste) of the lipid precursor molecule. TD electron correlation PBEPBE/6-31G calculations show that in the different energies of excitation, the charge transfer tunneling is from sensitizer to lipid precursor and cytosine molecules. One should note that in a water solvent, the electron charge transfer pi-pi* transition in the fifth and sixth excited state is from the HOMO and HOMO-1 located on the sensitizer 1,4-bis(N,N-dimethylamino)naphthalene molecule to the LUMO+2 located on the cytosine-PNA fragment molecule. Investigation results indicate that strong back electron tunneling from the sensitizer 1,4-bis(N,N-dimethylamino)naphthalene molecule to the cytosine molecule in the LANL artificial photosynthetic system exists.
为了支持美国洛斯阿拉莫斯国家实验室“原始细胞组装”项目中人造活生物体以及欧盟“可编程人工细胞进化”项目中可编程纳米生物机器人的创建,我们使用量子力学(QM)、密度泛函理论(DFT)、半经验PM3方法和分子力学(MM)软件,在水环境中研究了基于肽核酸(PNA)的各种复杂光合系统。包括电子相关性的量子力学DFT PBEPBE模拟证实,环绕洛斯阿拉莫斯国家实验室原始生物体所有光合复合体的水分子是主要构建因素,并稳定了由以下部分组成的该系统:通过共价键连接敏化剂1,4 - 双(N,N - 二甲基氨基)萘分子的PNA片段、脂质前体分子和脂质分子单层片段。复合人工原始细胞光合中心的吸收光谱向红色波长的偏移可作为该系统复杂性的度量。使用含时(TD)PBEPBE/6 - 31G模型计算得出,第一和第三激发态中的电子π - π跃迁是从位于共轭水分子和敏化剂1,4 - 双(N,N - 二甲基氨基)萘分子上的最高占据分子轨道(HOMO)和HOMO - 1跃迁到脂质前体分子的最低未占据分子轨道(LUMO)。由于转移电子云在脂质前体分子头部(废物)的定位,第一和第三激发态中的电子电荷隧穿应诱导脂质前体分子的代谢光解离。TD电子相关性PBEPBE/6 - 31G计算表明,在不同的激发能量下,电荷转移隧穿是从敏化剂到脂质前体和胞嘧啶分子。应当注意的是,在水溶剂中,第五和第六激发态中的电子电荷转移π - π跃迁是从位于敏化剂1,4 - 双(N,N - 二甲基氨基)萘分子上的HOMO和HOMO - 1跃迁到位于胞嘧啶 - PNA片段分子上的LUMO + 2。研究结果表明,在洛斯阿拉莫斯国家实验室人工光合系统中存在从敏化剂1,4 - 双(N,N - 二甲基氨基)萘分子到胞嘧啶分子的强烈反向电子隧穿。