Suppr超能文献

原位I型胶原蛋白的微纤维结构。

Microfibrillar structure of type I collagen in situ.

作者信息

Orgel Joseph P R O, Irving Thomas C, Miller Andrew, Wess Tim J

机构信息

Center for Synchrotron Radiation Research and Instrumentation, Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9001-5. doi: 10.1073/pnas.0502718103. Epub 2006 Jun 2.

Abstract

The fibrous collagens are ubiquitous in animals and form the structural basis of all mammalian connective tissues, including those of the heart, vasculature, skin, cornea, bones, and tendons. However, in comparison with what is known of their production, turnover and physiological structure, very little is understood regarding the three-dimensional arrangement of collagen molecules in naturally occurring fibrils. This knowledge may provide insight into key biological processes such as fibrillo-genesis and tissue remodeling and into diseases such as heart disease and cancer. Here we present a crystallographic determination of the collagen type I supermolecular structure, where the molecular conformation of each collagen segment found within the naturally occurring crystallographic unit cell has been defined (P1, a approximately 40.0 A, b approximately 27.0 A, c approximately 678 A, alpha approximately 89.2 degrees , beta approximately 94.6 degrees , gamma approximately 105.6 degrees ; reflections: 414, overlapping, 232, and nonoverlapping, 182; resolution, 5.16 A axial and 11.1 A equatorial). This structure shows that the molecular packing topology of the collagen molecule is such that packing neighbors are arranged to form a supertwisted (discontinuous) right-handed microfibril that interdigitates with neighboring microfibrils. This interdigitation establishes the crystallographic superlattice, which is formed of quasihexagonally packed collagen molecules. In addition, the molecular packing structure of collagen shown here provides information concerning the potential modes of action of two prominent molecules involved in human health and disease: decorin and the Matrix Metallo-Proteinase (MMP) collagenase.

摘要

纤维状胶原蛋白在动物体内普遍存在,构成了所有哺乳动物结缔组织的结构基础,包括心脏、血管、皮肤、角膜、骨骼和肌腱的结缔组织。然而,与我们对其产生、周转和生理结构的了解相比,对于天然存在的原纤维中胶原蛋白分子的三维排列却知之甚少。这方面的知识可能有助于深入了解诸如纤维形成和组织重塑等关键生物学过程,以及诸如心脏病和癌症等疾病。在此,我们展示了I型胶原蛋白超分子结构的晶体学测定结果,其中确定了天然存在的晶体学晶胞内每个胶原蛋白片段的分子构象(P1,a约为40.0 Å,b约为27.0 Å,c约为678 Å,α约为89.2°,β约为94.6°,γ约为105.6°;反射:414个重叠的、232个非重叠的和182个;分辨率,轴向5.16 Å和赤道11.1 Å)。该结构表明,胶原蛋白分子的分子堆积拓扑结构使得堆积相邻分子排列形成超扭曲(不连续)的右手微原纤维,该微原纤维与相邻微原纤维相互交错。这种交错形成了晶体学超晶格,它由准六边形堆积的胶原蛋白分子构成。此外,此处展示的胶原蛋白分子堆积结构提供了有关参与人类健康和疾病的两种重要分子:核心蛋白聚糖和基质金属蛋白酶(MMP)胶原酶的潜在作用模式的信息。

相似文献

1
Microfibrillar structure of type I collagen in situ.
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9001-5. doi: 10.1073/pnas.0502718103. Epub 2006 Jun 2.
2
Re: Microfibrillar structure of type I collagen in situ.
Acta Crystallogr D Biol Crystallogr. 2009 Sep;65(Pt 9):1007-8; author reply 1009-10. doi: 10.1107/S0907444909023051. Epub 2009 Aug 14.
3
The in situ supermolecular structure of type I collagen.
Structure. 2001 Nov;9(11):1061-9. doi: 10.1016/s0969-2126(01)00669-4.
4
Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales.
Acta Biomater. 2017 Apr 1;52:21-32. doi: 10.1016/j.actbio.2016.12.023. Epub 2016 Dec 10.
5
Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7307-12. doi: 10.1073/pnas.111150598. Epub 2001 Jun 5.
6
[Functional histology of dermis].
Ann Dermatol Venereol. 2008 Jan;135(1 Pt 2):1S5-20. doi: 10.1016/S0151-9638(08)70206-0.
8
Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen.
Connect Tissue Res. 2011 Jun;52(3):242-54. doi: 10.3109/03008207.2010.551567. Epub 2011 Mar 15.
9
Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan.
J Biol Chem. 2003 Sep 26;278(39):37698-704. doi: 10.1074/jbc.M304638200. Epub 2003 Jul 1.
10
Differential interactions of decorin and decorin mutants with type I and type VI collagens.
Eur J Biochem. 2004 Aug;271(16):3389-98. doi: 10.1111/j.1432-1033.2004.04273.x.

引用本文的文献

2
Investigating the influence of mineral content changes on mechanical properties through ligament insertion.
Front Aging. 2025 Jul 7;6:1556577. doi: 10.3389/fragi.2025.1556577. eCollection 2025.
3
Proteomic characterization of type I collagen N-terminal crosslinked peptides.
Matrix Biol Plus. 2025 Jun 19;27:100179. doi: 10.1016/j.mbplus.2025.100179. eCollection 2025 Aug.
4
Validation of the "Stoichiometric Hydration Ice-Bridge Model" Provides Method To Predict Protein Folding Energetics.
J Phys Chem B. 2025 Jul 3;129(26):6477-6488. doi: 10.1021/acs.jpcb.5c01583. Epub 2025 Jun 25.
5
ColBuilder: flexible structure generation of crosslinked collagen fibrils.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf278.
6
Water and Collagen: A Mystery Yet to Unfold.
Biomacromolecules. 2025 May 12;26(5):2784-2799. doi: 10.1021/acs.biomac.4c01735. Epub 2025 Apr 10.
7
Solid-State NMR Spectroscopy Investigation of Structural Changes of Mechanically Strained Mouse Tail Tendons.
J Am Chem Soc. 2025 Mar 19;147(11):9220-9228. doi: 10.1021/jacs.4c13930. Epub 2025 Mar 8.
8
A Collagen Triple Helix without the Superhelical Twist.
ACS Cent Sci. 2025 Feb 4;11(2):331-345. doi: 10.1021/acscentsci.5c00018. eCollection 2025 Feb 26.
9
Poly(ADP-ribose) binding sites on collagen I fibrils for nucleating intrafibrillar bone mineral.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2414849122. doi: 10.1073/pnas.2414849122. Epub 2025 Feb 20.
10
Collagen Alpha 1(XI) Amino-Terminal Domain Modulates Type I Collagen Fibril Assembly.
Biochemistry. 2025 Feb 4;64(3):735-747. doi: 10.1021/acs.biochem.4c00434. Epub 2025 Jan 22.

本文引用的文献

2
Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy.
Biophys J. 2005 Jun;88(6):4223-31. doi: 10.1529/biophysj.104.055228. Epub 2005 Mar 18.
3
Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan.
Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15633-8. doi: 10.1073/pnas.0402976101. Epub 2004 Oct 22.
4
Differential interactions of decorin and decorin mutants with type I and type VI collagens.
Eur J Biochem. 2004 Aug;271(16):3389-98. doi: 10.1111/j.1432-1033.2004.04273.x.
5
Biologically active decorin is a monomer in solution.
J Biol Chem. 2004 Feb 20;279(8):6606-12. doi: 10.1074/jbc.M310342200. Epub 2003 Dec 3.
6
A SUBUNIT MODEL FOR THE TROPOCOLLAGEN MACROMOLECULE.
Proc Natl Acad Sci U S A. 1964 May;51(5):871-6. doi: 10.1073/pnas.51.5.871.
7
Structural units in collagen fibrils.
Nature. 1954 Dec 18;174(4442):1142-3. doi: 10.1038/1741142a0.
8
Investigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy.
Biochem Biophys Res Commun. 2003 Apr 4;303(2):508-13. doi: 10.1016/s0006-291x(03)00390-5.
9
Light and X-ray scattering show decorin to be a dimer in solution.
J Biol Chem. 2003 May 16;278(20):18353-9. doi: 10.1074/jbc.M211936200. Epub 2003 Feb 21.
10
Building collagen molecules, fibrils, and suprafibrillar structures.
J Struct Biol. 2002 Jan-Feb;137(1-2):2-10. doi: 10.1006/jsbi.2002.4450.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验