Reddy Sai T, Berk David A, Jain Rakesh K, Swartz Melody A
Institute of Bioengineering, Laboratory for Mechanobiology and Morphogenesis, Station 15, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland.
J Appl Physiol (1985). 2006 Oct;101(4):1162-9. doi: 10.1152/japplphysiol.00389.2006. Epub 2006 Jun 8.
Effective interstitial transport of particles is necessary for injected drug/diagnostic agents to reach the intended target; however, quantitative methods to estimate such transport parameters are lacking. In this study, we develop an in vivo model for evaluating interstitial convection of injected macromolecules and nanoparticles. Fluorescently labeled macromolecules and particles are coinfused with a reference solute at constant infusion pressure intradermally into the mouse tail tip, and their relative convection coefficients are determined from spatial and temporal interstitial concentration profiles. Quantifying relative solute velocity with a coinfused reference solute eliminates the need to estimate interstitial fluid velocity profiles, greatly reducing experimental variability. To demonstrate sensitivity and usefulness of this model, we compare the effects of size (dextrans of 3, 40, 71, and 2,000 kDa and 40-nm diameter particles), shape (linear dextran 71 kDa vs. 69 kDa globular protein albumin), and charge (anionic vs. neutral dextran 3 kDa) on interstitial convection. We find significant differences in interstitial transport rates between each of these molecules and confirm expected transport phenomena, testifying to sensitivity of the model in comparing solutes of different size, shape, and charge. Our data show that size exclusion (within a specific size range) dominates molecular convection, while mechanical hindrance slows larger molecules and nanoparticles; proteins convect slower than linear molecules of equal molecular mass, and negative surface charges increase convection through matrix repulsion. Our in vivo model is presumably a sensitive and reliable tool for evaluating and optimizing potential drug/diagnostic vehicles that utilize interstitial and lymphatic delivery routes.
对于注射的药物/诊断剂而言,粒子在组织间隙中的有效转运是其到达预期靶点所必需的;然而,目前缺乏估算此类转运参数的定量方法。在本研究中,我们开发了一种体内模型,用于评估注射的大分子和纳米颗粒在组织间隙中的对流情况。将荧光标记的大分子和颗粒与一种参考溶质在恒定输注压力下皮内注射到小鼠尾尖,然后根据组织间隙中溶质浓度的时空分布来确定它们的相对对流系数。使用共注射的参考溶质来量化相对溶质速度,无需估算组织间隙液速度分布,大大降低了实验变异性。为了证明该模型的敏感性和实用性,我们比较了大小(3 kDa、40 kDa、71 kDa和2000 kDa的葡聚糖以及直径为40 nm的颗粒)、形状(71 kDa的线性葡聚糖与69 kDa的球状蛋白白蛋白)和电荷(阴离子型与中性的3 kDa葡聚糖)对组织间隙对流的影响。我们发现这些分子之间的组织间隙转运速率存在显著差异,并证实了预期的转运现象,这证明该模型在比较不同大小、形状和电荷的溶质时具有敏感性。我们的数据表明,尺寸排阻(在特定尺寸范围内)主导分子对流,而机械阻碍会使较大的分子和纳米颗粒的对流减慢;蛋白质的对流比等分子量的线性分子慢,并且负表面电荷通过基质排斥作用增加对流。我们的体内模型大概是一种用于评估和优化利用组织间隙和淋巴输送途径的潜在药物/诊断载体的敏感且可靠的工具。