Lee Doh C, Mikulec Frederic V, Pelaez José M, Koo Bonil, Korgel Brian A
Department of Chemical Engineering, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712-1062, USA.
J Phys Chem B. 2006 Jun 15;110(23):11160-6. doi: 10.1021/jp060974z.
Colloidal FePt nanocrystals, 6 nm in diameter, were synthesized and then coated with silica (SiO2) shells. The silica shell thickness could be varied from 10 to 25 nm. As-made FePt@SiO2 nanocrystals have low magnetocrystalline anisotropy due to a compositionally disordered FePt core. When films of FePt@SiO2 particles are annealed under hydrogen at 650 degrees C or above, the FePt core transforms to the compositionally ordered L1(0) phase, and superparamagnetic blocking temperatures exceeding room temperature are obtained. The SiO2 shell prevents FePt coalescence at annealing temperatures up to approximately 850 degrees C. Annealing under air or nitrogen does not induce the FePt phase transition. The silica shell limits magnetic dipole coupling between the FePt nanocrystals; however, low temperature (5 K) and room temperature magnetization scans show slightly constricted hysteresis loops with coercivities that decrease systematically with decreased shell thickness, possibly resulting from differences in magnetic dipole coupling between particles.
合成了直径为6nm的胶体FePt纳米晶体,然后用二氧化硅(SiO₂)壳包覆。二氧化硅壳的厚度可以在10到25nm之间变化。由于FePt核成分无序,制备出的FePt@SiO₂纳米晶体具有低磁晶各向异性。当FePt@SiO₂颗粒薄膜在650℃或更高温度下于氢气中退火时,FePt核转变为成分有序的L1(0)相,并获得超过室温的超顺磁阻挡温度。在高达约850℃的退火温度下,SiO₂壳可防止FePt聚结。在空气或氮气中退火不会诱导FePt相变。二氧化硅壳限制了FePt纳米晶体之间的磁偶极耦合;然而,低温(5K)和室温磁化扫描显示磁滞回线略有收缩,矫顽力随壳厚度减小而系统降低,这可能是由于颗粒间磁偶极耦合的差异所致。