Suppr超能文献

用晶体竞争解释珍珠贝科(双壳纲:软体动物)中珍珠层的组织模式。

Organization pattern of nacre in Pteriidae (Bivalvia: Mollusca) explained by crystal competition.

作者信息

Checa Antonio G, Okamoto Takashi, Ramírez Joaquín

机构信息

Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.

出版信息

Proc Biol Sci. 2006 Jun 7;273(1592):1329-37. doi: 10.1098/rspb.2005.3460.

Abstract

Bivalve nacre is a brick-wall-patterned biocomposite of aragonite platelets surrounded by organic matter. SEM-electron back scatter diffraction analysis of nacre of the bivalve family Pteriidae reveals that early aragonite crystals grow with their c-axes oriented perpendicular to the growth surface but have their a- and b-axes disoriented. With the accumulation of successive lamellae, crystals progressively orient themselves with their b-axes mutually parallel and towards the growth direction. We propose that progressive orientation is a result of competition between nacre crystals at the growth front of lamellae, which favours selection of crystals whose fastest growth axis (b-axis) is oriented parallel to the direction of propagation of the lamella. A theoretical model has been developed, which simulates competition of rhombic plates at the lamellar growth front as well as epitaxial growth of crystals onto those of the preceding lamella. The model predicts that disordered nacre progressively produces bivalve-like oriented nacre. As growth fronts become diffuse (as is the common case in bivalves) it takes longer for nacre to become organized. Formation of microdomains of nacre platelets with different orientations is also reproduced. In conclusion, not only the organic matrix component, but also the mineral phase plays an active role in organizing the final microstructure.

摘要

双壳贝类珍珠层是一种由文石片晶组成的砖墙图案生物复合材料,其周围环绕着有机质。对珍珠贝科双壳贝类珍珠层进行扫描电子显微镜背散射衍射分析发现,早期文石晶体生长时其c轴垂直于生长表面,但a轴和b轴无序排列。随着连续薄片的积累,晶体逐渐使它们的b轴相互平行并朝着生长方向排列。我们认为这种渐进排列是薄片生长前沿珍珠层晶体之间竞争的结果,这种竞争有利于选择其最快生长轴(b轴)平行于薄片传播方向的晶体。已经建立了一个理论模型,该模型模拟了菱形板在薄片生长前沿的竞争以及晶体在前一层薄片晶体上的外延生长。该模型预测无序的珍珠层会逐渐产生类似双壳贝类的定向珍珠层。随着生长前沿变得弥散(双壳贝类中常见的情况),珍珠层变得有序所需的时间更长。还再现了具有不同取向的珍珠层片晶微区的形成。总之,不仅有机基质成分,而且矿物相在组织最终微观结构中也起着积极作用。

相似文献

1
Organization pattern of nacre in Pteriidae (Bivalvia: Mollusca) explained by crystal competition.
Proc Biol Sci. 2006 Jun 7;273(1592):1329-37. doi: 10.1098/rspb.2005.3460.
2
Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca).
Biomaterials. 2005 Mar;26(9):1071-9. doi: 10.1016/j.biomaterials.2004.04.007.
3
Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10499-504. doi: 10.1073/pnas.0900867106. Epub 2009 Jun 15.
5
Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata.
Biomaterials. 2009 Jun;30(16):3028-34. doi: 10.1016/j.biomaterials.2009.03.011. Epub 2009 Mar 28.
6
Homoepitaxial meso- and microscale crystal co-orientation and organic matrix network structure in Mytilus edulis nacre and calcite.
Acta Biomater. 2013 Dec;9(12):9492-502. doi: 10.1016/j.actbio.2013.07.020. Epub 2013 Jul 27.
7
Nacre and false nacre (foliated aragonite) in extant monoplacophorans (=Tryblidiida: Mollusca).
Naturwissenschaften. 2009 Jan;96(1):111-22. doi: 10.1007/s00114-008-0461-1. Epub 2008 Oct 9.
8
Crystallographic structure of the foliated calcite of bivalves.
J Struct Biol. 2007 Feb;157(2):393-402. doi: 10.1016/j.jsb.2006.09.005. Epub 2006 Oct 11.
9
Molecular approaches to understand biomineralization of shell nacreous layer.
Prog Mol Subcell Biol. 2011;52:331-52. doi: 10.1007/978-3-642-21230-7_12.
10
Crystallographic control on the substructure of nacre tablets.
J Struct Biol. 2013 Sep;183(3):368-376. doi: 10.1016/j.jsb.2013.07.014. Epub 2013 Aug 6.

引用本文的文献

2
An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels.
RSC Adv. 2020 Aug 11;10(49):29543-29554. doi: 10.1039/d0ra04271d. eCollection 2020 Aug 5.
4
Quantifying susceptibility of marine invertebrate biocomposites to dissolution in reduced pH.
R Soc Open Sci. 2019 Jun 5;6(6):190252. doi: 10.1098/rsos.190252. eCollection 2019 Jun.
5
Architecture of crossed-lamellar bivalve shells: the southern giant clam (, Röding, 1798).
R Soc Open Sci. 2017 Sep 6;4(9):170622. doi: 10.1098/rsos.170622. eCollection 2017 Sep.
6
Polarimetry of nacre indicates myostracal layer interrupts nacre structure.
R Soc Open Sci. 2017 Feb 15;4(2):160893. doi: 10.1098/rsos.160893. eCollection 2017 Feb.
7
Toughening mechanisms in bioinspired multilayered materials.
J R Soc Interface. 2015 Jan 6;12(102):20140855. doi: 10.1098/rsif.2014.0855.
8
DNA fingerprinting of pearls to determine their origins.
PLoS One. 2013 Oct 9;8(10):e75606. doi: 10.1371/journal.pone.0075606. eCollection 2013.
9
The neural origins of shell structure and pattern in aquatic mollusks.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6837-42. doi: 10.1073/pnas.0810311106. Epub 2009 Apr 7.
10
The dynamics of nacre self-assembly.
J R Soc Interface. 2007 Jun 22;4(14):491-504. doi: 10.1098/rsif.2006.0188.

本文引用的文献

1
Amorphous layer around aragonite platelets in nacre.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12653-5. doi: 10.1073/pnas.0502577102. Epub 2005 Aug 29.
2
Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca).
Biomaterials. 2005 Mar;26(9):1071-9. doi: 10.1016/j.biomaterials.2004.04.007.
3
Artificial dental root made of natural calcium carbonate (Bioracine).
Clin Mater. 1990;5(2-4):235-50. doi: 10.1016/0267-6605(90)90022-n.
4
Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration.
C R Acad Sci III. 1997 Mar;320(3):253-8. doi: 10.1016/s0764-4469(97)86933-8.
6
Ultrastructure and inferred calcification of the mature and developing nacre in bivalve mollusks.
Calcif Tissue Res. 1968 Mar 27;1(4):306-18. doi: 10.1007/BF02008102.
7
Innovative materials processing strategies: a biomimetic approach.
Science. 1992 Feb 28;255(5048):1098-105. doi: 10.1126/science.1546311.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验