Suppr超能文献

不同核苷酸状态下肌动球蛋白键的力学特性被调节以适应肌肉收缩。

Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction.

作者信息

Guo Bin, Guilford William H

机构信息

Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9844-9. doi: 10.1073/pnas.0601255103. Epub 2006 Jun 19.

Abstract

Muscle contraction and many other cell movements are driven by cyclic interactions between actin filaments and the motor enzyme myosin. Conformational changes in the actin-myosin binding interface occur in concert with the binding of ATP, binding to actin, and loss of hydrolytic by-products, but the effects of these conformational changes on the strength of the actomyosin bond are unknown. The force-dependent kinetics of the actomyosin bond may be particularly important at high loads, where myosin may detach from actin before achieving its full power stroke. Here we show that over a physiological range of rapidly applied loads, actomyosin behaves as a "catch" bond, characterized by increasing lifetimes with increasing loads up to a maximum at approximately 6 pN. Surprisingly, we found that the myosin-ADP bond is possessed of longer lifetimes under load than rigor bonds, although the load at which bond lifetime is maximal remains unchanged. We also found that actomyosin bond lifetime is ultimately dependent not only on load, but loading history as well. These data suggest a complex relationship between the rate of actomyosin dissociation and muscle force and shortening velocity. The 6-pN load for maximum bond lifetime is near the force generated by a single myosin molecule during isometric contraction. This raises the possibility that all catch bonds between load-bearing molecules are "mechanokinetically" tuned to their physiological environment.

摘要

肌肉收缩和许多其他细胞运动是由肌动蛋白丝与运动酶肌球蛋白之间的循环相互作用驱动的。肌动蛋白 - 肌球蛋白结合界面的构象变化与ATP的结合、与肌动蛋白的结合以及水解副产物的损失协同发生,但这些构象变化对肌动球蛋白键强度的影响尚不清楚。在高负荷下,肌动球蛋白键的力依赖性动力学可能尤为重要,因为在这种情况下,肌球蛋白可能在完成其全力行程之前就从肌动蛋白上脱离。在这里,我们表明,在快速施加的负荷的生理范围内,肌动球蛋白表现为一种“捕获”键,其特征是随着负荷增加,寿命延长,直至在约6皮牛时达到最大值。令人惊讶的是,我们发现,在负荷下,肌球蛋白 - ADP键的寿命比僵直键更长,尽管键寿命最大时的负荷保持不变。我们还发现,肌动球蛋白键的寿命最终不仅取决于负荷,还取决于加载历史。这些数据表明,肌动球蛋白解离速率与肌肉力量和缩短速度之间存在复杂的关系。键寿命最大时的6皮牛负荷接近单个肌球蛋白分子在等长收缩期间产生的力。这增加了一种可能性,即承重分子之间的所有捕获键都在“机械动力学”上适应了它们的生理环境。

相似文献

1
Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction.
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9844-9. doi: 10.1073/pnas.0601255103. Epub 2006 Jun 19.
3
The lifetime of the actomyosin complex in vitro under load corresponding to stretch of contracting muscle.
Eur Biophys J. 2015 Sep;44(6):457-63. doi: 10.1007/s00249-015-1048-3. Epub 2015 Jun 5.
4
Physical driving force of actomyosin motility based on the hydration effect.
Cytoskeleton (Hoboken). 2017 Dec;74(12):512-527. doi: 10.1002/cm.21417. Epub 2017 Nov 17.
5
Structural coupling of troponin C and actomyosin in muscle fibers.
Biochemistry. 1998 May 12;37(19):6628-35. doi: 10.1021/bi972062g.
6
Single-molecule analysis of the actomyosin motor using nano-manipulation.
Biochem Biophys Res Commun. 1994 Mar 15;199(2):1057-63. doi: 10.1006/bbrc.1994.1336.
8
Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function.
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7714-9. doi: 10.1073/pnas.0800564105. Epub 2008 May 28.
9
The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer.
Biophys J. 1998 Sep;75(3):1424-38. doi: 10.1016/S0006-3495(98)74061-5.
10
The effect of polyethylene glycol on the mechanics and ATPase activity of active muscle fibers.
Biophys J. 2000 Feb;78(2):927-39. doi: 10.1016/S0006-3495(00)76650-1.

引用本文的文献

1
Enhanced Processivity and Collective Force Production of Kinesins at Low Radial Forces.
bioRxiv. 2025 Aug 31:2025.08.27.672644. doi: 10.1101/2025.08.27.672644.
2
Dynamic clamping induces rotation-to-beating transition of pinned filaments in gliding assays.
J R Soc Interface. 2025 May;22(226):20240859. doi: 10.1098/rsif.2024.0859. Epub 2025 May 7.
3
Integrin force loading rate in mechanobiology: From model to molecular measurement.
QRB Discov. 2025 Jan 16;6:e9. doi: 10.1017/qrd.2024.28. eCollection 2025.
4
Stomatocyte-discocyte-echinocyte transformations of erythrocyte modulated by membrane-cytoskeleton mechanical properties.
Biophys J. 2025 Jan 21;124(2):267-283. doi: 10.1016/j.bpj.2024.12.001. Epub 2024 Dec 5.
5
Engineering tunable catch bonds with DNA.
Nat Commun. 2024 Oct 12;15(1):8828. doi: 10.1038/s41467-024-52749-w.
6
7
Subcellular context-specific tuning of actomyosin ring contractility within a common cytoplasm.
bioRxiv. 2024 Aug 26:2024.08.08.607200. doi: 10.1101/2024.08.08.607200.
8
Mechanical and biochemical feedback combine to generate complex contractile oscillations in cytokinesis.
Curr Biol. 2024 Jul 22;34(14):3201-3214.e5. doi: 10.1016/j.cub.2024.06.037. Epub 2024 Jul 10.
9
FimH-mannose noncovalent bonds survive minutes to hours under force.
Biophys J. 2024 Sep 17;123(18):3038-3050. doi: 10.1016/j.bpj.2024.07.001. Epub 2024 Jul 2.
10
Mechanical control of antigen detection and discrimination by T and B cell receptors.
Biophys J. 2024 Aug 6;123(15):2234-2255. doi: 10.1016/j.bpj.2024.05.020. Epub 2024 May 23.

本文引用的文献

1
Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin.
Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):87-92. doi: 10.1073/pnas.0506830102. Epub 2005 Dec 21.
2
Force generation in single conventional actomyosin complexes under high dynamic load.
Biophys J. 2006 Feb 15;90(4):1295-307. doi: 10.1529/biophysj.105.068429. Epub 2005 Dec 2.
3
Catch-bond model derived from allostery explains force-activated bacterial adhesion.
Biophys J. 2006 Feb 1;90(3):753-64. doi: 10.1529/biophysj.105.066548. Epub 2005 Nov 4.
4
Load-dependent kinetics of myosin-V can explain its high processivity.
Nat Cell Biol. 2005 Sep;7(9):861-9. doi: 10.1038/ncb1287. Epub 2005 Aug 14.
5
The two-pathway model for the catch-slip transition in biological adhesion.
Biophys J. 2005 Sep;89(3):1446-54. doi: 10.1529/biophysj.105.062158. Epub 2005 Jun 10.
6
Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds.
Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1835-9. doi: 10.1073/pnas.0406938102.
7
Adenosine diphosphate and strain sensitivity in myosin motors.
Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1867-77. doi: 10.1098/rstb.2004.1560.
8
Force history dependence of receptor-ligand dissociation.
Biophys J. 2005 Feb;88(2):1458-66. doi: 10.1529/biophysj.104.050567. Epub 2004 Nov 19.
9
The tail of myosin reduces actin filament velocity in the in vitro motility assay.
Cell Motil Cytoskeleton. 2004 Dec;59(4):264-72. doi: 10.1002/cm.20040.
10
Catch bonds govern adhesion through L-selectin at threshold shear.
J Cell Biol. 2004 Sep 13;166(6):913-23. doi: 10.1083/jcb.200403144.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验