Suppr超能文献

肌电图信号分析技术:检测、处理、分类及应用

Techniques of EMG signal analysis: detection, processing, classification and applications.

作者信息

Raez M B I, Hussain M S, Mohd-Yasin F

机构信息

Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia.

出版信息

Biol Proced Online. 2006;8:11-35. doi: 10.1251/bpo115. Epub 2006 Mar 23.

Abstract

Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications.

摘要

肌电图(EMG)信号可用于临床/生物医学应用、可演化硬件芯片(EHW)开发以及现代人机交互。从肌肉获取的EMG信号需要先进的检测、分解、处理和分类方法。本文的目的是阐述用于EMG信号分析的各种方法和算法,以提供理解信号及其本质的高效且有效的方式。我们还进一步指出了一些使用EMG的硬件实现方式,重点关注与假肢手控制、抓握识别和人机交互相关的应用。还进行了一项比较研究,以展示各种EMG信号分析方法的性能。本文为研究人员提供了对EMG信号及其分析过程的良好理解。这些知识将帮助他们开发更强大、灵活和高效的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a95/1455479/a2e70546d456/bpo_v8_p11_m115f1lg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验