Suppr超能文献

细胞色素C氧化酶厌氧还原过程中质子摄取量的计算:该反应是否为电中性?

Calculated proton uptake on anaerobic reduction of cytochrome C oxidase: is the reaction electroneutral?

作者信息

Song Yifan, Michonova-Alexova Ekaterina, Gunner M R

机构信息

Physics Department J-419, City College of New York, 138th Street and Convent Avenue, New York, New York 10031, USA.

出版信息

Biochemistry. 2006 Jul 4;45(26):7959-75. doi: 10.1021/bi052183d.

Abstract

Cytochrome c oxidase is a transmembrane proton pump that builds an electrochemical gradient using chemical energy from the reduction of O(2). Ionization states of all residues were calculated with Multi-Conformation Continuum Electrostatics (MCCE) in seven anaerobic oxidase redox states ranging from fully oxidized to fully reduced. One long-standing problem is how proton uptake is coupled to the reduction of the active site binuclear center (BNC). The BNC has two cofactors: heme a(3) and Cu(B). If the protein needs to maintain electroneutrality, then 2 protons will be bound when the BNC is reduced by 2 electrons in the reductive half of the reaction cycle. The effective pK(a)s of ionizable residues around the BNC are evaluated in Rhodobacter sphaeroides cytochrome c oxidase. At pH 7, only a hydroxide coordinated to Cu(B) shifts its pK(a) from below 7 to above 7 and so picks up a proton when heme a(3) and Cu(B) are reduced. Glu I-286, Tyr I-288, His I-334, and a second hydroxide on heme a(3) all have pK(a)s above 7 in all redox states, although they have only 1.6-3.5 DeltapK units energy cost for deprotonation. Thus, at equilibrium, they are protonated and cannot serve as proton acceptors. The propionic acids near the BNC are deprotonated with pK(a)s well below 7. They are well stabilized in their anionic state and do not bind a proton upon BNC reduction. This suggests that electroneutrality in the BNC is not maintained during the anaerobic reduction. Proton uptake on reduction of Cu(A), heme a, heme a(3), and Cu(B) shows approximately 2.5 protons bound per 4 electrons, in agreement with prior experiments. One proton is bound by a hydroxyl group in the BNC and the rest to groups far from the BNC. The electrochemical midpoint potential (E(m)) of heme a is calculated in the fully oxidized protein and with 1 or 2 electrons in the BNC. The E(m) of heme a shifts down when the BNC is reduced, which agrees with prior experiments. If the BNC reduction is electroneutral, then the heme a E(m) is independent of the BNC redox state.

摘要

细胞色素c氧化酶是一种跨膜质子泵,它利用氧气还原产生的化学能建立电化学梯度。在从完全氧化到完全还原的七种厌氧氧化酶氧化还原状态下,使用多构象连续介质静电学(MCCE)计算了所有残基的电离状态。一个长期存在的问题是质子摄取如何与活性位点双核中心(BNC)的还原相偶联。BNC有两个辅因子:血红素a3和Cu(B)。如果蛋白质需要保持电中性,那么在反应循环的还原半程中,当BNC被2个电子还原时,会结合2个质子。在球形红杆菌细胞色素c氧化酶中评估了BNC周围可电离残基的有效pKa值。在pH 7时,只有与Cu(B)配位的氢氧根将其pKa从7以下变为7以上,因此当血红素a3和Cu(B)被还原时会摄取一个质子。Glu I-286、Tyr I-288、His I-334以及血红素a3上的第二个氢氧根在所有氧化还原状态下的pKa都高于7,尽管它们去质子化的能量成本仅为1.6-3.5 ΔpK单位。因此,在平衡状态下,它们是质子化的,不能作为质子受体。BNC附近的丙酸去质子化,其pKa远低于7。它们在阴离子状态下稳定,在BNC还原时不结合质子。这表明在厌氧还原过程中BNC不保持电中性。Cu(A)、血红素a、血红素a3和Cu(B)还原时的质子摄取显示每4个电子结合约2.5个质子,与先前的实验一致。一个质子由BNC中的一个羟基结合,其余质子结合到远离BNC的基团上。在完全氧化的蛋白质中以及BNC中有1个或2个电子时,计算了血红素a的电化学中点电位(E(m))。当BNC被还原时,血红素a的E(m)下移,这与先前的实验一致。如果BNC还原是电中性的,那么血红素a的E(m)与BNC的氧化还原状态无关。

相似文献

4
Characterizing the proton loading site in cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12414-9. doi: 10.1073/pnas.1407187111. Epub 2014 Aug 11.
5
Lysine 362 in cytochrome c oxidase regulates opening of the K-channel via changes in pKA and conformation.
Biochim Biophys Acta. 2014 Dec;1837(12):1998-2003. doi: 10.1016/j.bbabio.2014.08.003.
6
Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases.
Biochemistry. 2003 Nov 18;42(45):13178-84. doi: 10.1021/bi0347407.
8
Active Site Midpoint Potentials in Different Cytochrome c Oxidase Families: A Computational Comparison.
Biochemistry. 2019 Apr 16;58(15):2028-2038. doi: 10.1021/acs.biochem.9b00093. Epub 2019 Mar 27.
9
Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases.
Biochimie. 1998 Oct;80(10):821-36. doi: 10.1016/s0300-9084(00)88877-x.
10
Proton pumping in cytochrome c oxidase: energetic requirements and the role of two proton channels.
Biochim Biophys Acta. 2014 Jul;1837(7):1165-77. doi: 10.1016/j.bbabio.2014.01.002. Epub 2014 Jan 11.

引用本文的文献

1
Electric fields control water-gated proton transfer in cytochrome oxidase.
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2207761119. doi: 10.1073/pnas.2207761119. Epub 2022 Sep 12.
2
Cavity hydration dynamics in cytochrome oxidase and functional implications.
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8830-E8836. doi: 10.1073/pnas.1707922114. Epub 2017 Oct 2.
4
Exploring O2 diffusion in A-type cytochrome c oxidases: molecular dynamics simulations uncover two alternative channels towards the binuclear site.
PLoS Comput Biol. 2014 Dec 4;10(12):e1004010. doi: 10.1371/journal.pcbi.1004010. eCollection 2014 Dec.
5
Halorhodopsin pumps Cl- and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16377-82. doi: 10.1073/pnas.1411119111. Epub 2014 Oct 31.
6
Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy.
Biochim Biophys Acta. 2015 Jan;1847(1):98-108. doi: 10.1016/j.bbabio.2014.09.008. Epub 2014 Sep 28.
7
Characterizing the proton loading site in cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12414-9. doi: 10.1073/pnas.1407187111. Epub 2014 Aug 11.
8
Changing hydration level in an internal cavity modulates the proton affinity of a key glutamate in cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18886-91. doi: 10.1073/pnas.1313908110. Epub 2013 Nov 6.
9
Factors controlling the redox potential of ZnCe6 in an engineered bacterioferritin photochemical 'reaction centre'.
PLoS One. 2013 Jul 30;8(7):e68421. doi: 10.1371/journal.pone.0068421. Print 2013.
10
Functions of the hydrophilic channels in protonmotive cytochrome c oxidase.
J R Soc Interface. 2013 Jul 17;10(86):20130183. doi: 10.1098/rsif.2013.0183. Print 2013 Sep 6.

本文引用的文献

1
DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase.
J Phys Chem B. 2005 Mar 3;109(8):3616-26. doi: 10.1021/jp046535m.
2
Proton exit channels in bovine cytochrome c oxidase.
J Phys Chem B. 2005 Feb 10;109(5):1999-2006. doi: 10.1021/jp0464371.
3
Electrostatic environment of hemes in proteins: pK(a)s of hydroxyl ligands.
Biochemistry. 2006 Jul 4;45(26):7949-58. doi: 10.1021/bi052182l.
4
Combined DFT and electrostatics study of the proton pumping mechanism in cytochrome c oxidase.
Biochim Biophys Acta. 2006 Aug;1757(8):1035-46. doi: 10.1016/j.bbabio.2005.12.003. Epub 2006 Jan 18.
6
Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10478-81. doi: 10.1073/pnas.0502873102. Epub 2005 Jul 13.
7
Computer simulation of explicit proton translocation in cytochrome c oxidase: the D-pathway.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6795-800. doi: 10.1073/pnas.0408117102. Epub 2005 Apr 27.
8
Are acidic and basic groups in buried proteins predicted to be ionized?
J Mol Biol. 2005 May 20;348(5):1283-98. doi: 10.1016/j.jmb.2005.03.051. Epub 2005 Apr 7.
9
Simulating redox coupled proton transfer in cytochrome c oxidase: looking for the proton bottleneck.
FEBS Lett. 2005 Apr 11;579(10):2026-34. doi: 10.1016/j.febslet.2005.02.051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验