Suppr超能文献

恶性胶质瘤免疫抵抗机制及免疫抑制来源

Mechanisms of malignant glioma immune resistance and sources of immunosuppression.

作者信息

Gomez German G, Kruse Carol A

出版信息

Gene Ther Mol Biol. 2006;10(A):133-146.

Abstract

High grade malignant gliomas are genetically unstable, heterogeneous and highly infiltrative; all characteristics that lend glioma cells superior advantages in resisting conventional therapies. Unfortunately, the median survival time for patients with glioblastoma multiforme remains discouraging at 12-15 months from diagnosis. Neuroimmunologists/oncologists have focused their research efforts to harness the power of the immune system to improve brain tumor patient survival. In the past 30 years, small numbers of patients have been enrolled in a plethora of experimental immunotherapy Phase I and II trials. Some remarkable anecdotal responses to immune therapy are evident. Yet, the reasons for the mixed responses remain an enigma. The inability of the devised immunotherapies to consistently increase survival may be due, in part, to intrinsically-resistant glioma cells. It is also probable that the tumor compartment of the tumor-bearing host has mechanisms or produces factors that promote tumor tolerance and immune suppression. Finally, with adoptive immunotherapy of ex vivo activated effector cell preparations, the existence of suppressor T cells within them theoretically may contribute to immunotherapeutic failure. In this review, we will summarize our own studies with immunotherapy resistant glioma cell models, as well as cover other examined immunosuppressive factors in the tumor microenvironment and immune effector cell suppressor populations that may contribute to the overall immune suppression. An in-depth understanding of the obstacles will be necessary to appropriately develop strategies to overcome the resistance and improve survival in this select population of cancer patients.

摘要

高级别恶性胶质瘤具有基因不稳定、异质性高和浸润性强的特点;所有这些特征都赋予胶质瘤细胞在抵抗传统治疗方面的优越优势。不幸的是,多形性胶质母细胞瘤患者的中位生存时间自诊断起仍令人沮丧,仅为12 - 15个月。神经免疫学家/肿瘤学家已将研究重点放在利用免疫系统的力量来提高脑肿瘤患者的生存率上。在过去30年里,少数患者参与了大量的实验性免疫治疗I期和II期试验。免疫治疗有一些显著的个案反应。然而,反应不一的原因仍是个谜。设计的免疫疗法无法持续提高生存率,部分原因可能是胶质瘤细胞本身具有抗性。肿瘤宿主的肿瘤微环境也可能存在促进肿瘤耐受和免疫抑制的机制或产生相关因子。最后,对于体外激活的效应细胞制剂的过继性免疫治疗,其中存在的抑制性T细胞理论上可能导致免疫治疗失败。在这篇综述中,我们将总结我们自己对免疫治疗抗性胶质瘤细胞模型的研究,以及涵盖肿瘤微环境中其他已研究的免疫抑制因子和可能导致整体免疫抑制的免疫效应细胞抑制群体。深入了解这些障碍对于制定适当的策略以克服抗性并提高这一特定癌症患者群体的生存率是必要的。

相似文献

2
Current Immunotherapeutic Approaches for Malignant Gliomas.
Brain Tumor Res Treat. 2022 Jan;10(1):1-11. doi: 10.14791/btrt.2022.10.e25.
4
Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy.
Front Immunol. 2024 Jan 11;14:1299064. doi: 10.3389/fimmu.2023.1299064. eCollection 2023.
6
Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development.
Expert Opin Investig Drugs. 2020 Jul;29(7):659-684. doi: 10.1080/13543784.2020.1768528. Epub 2020 Jun 4.
7
Immune Escape in Glioblastoma Multiforme and the Adaptation of Immunotherapies for Treatment.
Front Immunol. 2020 Oct 15;11:582106. doi: 10.3389/fimmu.2020.582106. eCollection 2020.
9
Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds.
Int Rev Immunol. 2022;41(6):582-605. doi: 10.1080/08830185.2022.2101647. Epub 2022 Aug 8.
10
Immunotherapy for human glioma: innovative approaches and recent results.
Expert Rev Anticancer Ther. 2005 Oct;5(5):777-90. doi: 10.1586/14737140.5.5.777.

引用本文的文献

1
Viruses in glioblastoma: an update on evidence and clinical trials.
BJC Rep. 2024 Apr 19;2(1):33. doi: 10.1038/s44276-024-00051-z.
2
Role of Serotonergic System in Regulating Brain Tumor-Associated Neuroinflammatory Responses.
Methods Mol Biol. 2024;2761:181-207. doi: 10.1007/978-1-0716-3662-6_14.
3
Antibodies to varicella-zoster virus and three other herpesviruses and survival in adults with glioma.
Neuro Oncol. 2023 Jun 2;25(6):1047-1057. doi: 10.1093/neuonc/noac283.
4
Development of immunotherapy for high-grade gliomas: Overcoming the immunosuppressive tumor microenvironment.
Front Med (Lausanne). 2022 Sep 14;9:966458. doi: 10.3389/fmed.2022.966458. eCollection 2022.
5
Peroxidase is a novel potential marker in glioblastoma through bioinformatics method and experimental validation.
Front Genet. 2022 Aug 31;13:990344. doi: 10.3389/fgene.2022.990344. eCollection 2022.
6
Gamma Irradiation Triggers Immune Escape in Glioma-Propagating Cells.
Cancers (Basel). 2022 May 31;14(11):2728. doi: 10.3390/cancers14112728.
7
Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma.
Cancer Treat Res. 2022;183:161-184. doi: 10.1007/978-3-030-96376-7_5.
8
Tenascin-C can Serve as an Indicator for the Immunosuppressive Microenvironment of Diffuse Low-Grade Gliomas.
Front Immunol. 2022 Mar 16;13:824586. doi: 10.3389/fimmu.2022.824586. eCollection 2022.
10
Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments.
Front Pharmacol. 2021 May 18;12:680021. doi: 10.3389/fphar.2021.680021. eCollection 2021.

本文引用的文献

4
Regulation of immune responses by T cells.
N Engl J Med. 2006 Mar 16;354(11):1166-76. doi: 10.1056/NEJMra055446.
7
Prostaglandin E2 impairs CD4+ T cell activation by inhibition of lck: implications in Hodgkin's lymphoma.
Cancer Res. 2006 Jan 15;66(2):1114-22. doi: 10.1158/0008-5472.CAN-05-3252.
8
Putting the natural killer cell in its place.
Immunology. 2006 Jan;117(1):1-10. doi: 10.1111/j.1365-2567.2005.02256.x.
9
Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors.
Clin Cancer Res. 2005 Dec 1;11(23):8304-11. doi: 10.1158/1078-0432.CCR-04-2588.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验