Cuenda Sara, Sánchez Angel
Grupo Interdisciplinar de Sistemas Complejos (GISC) and Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain.
Chaos. 2006 Jun;16(2):023123. doi: 10.1063/1.2194468.
As a first step in the search of an analytical study of mechanical denaturation of DNA in terms of the sequence, we study stable, stationary solutions in the discrete, finite, and homogeneous Peyrard-Bishop DNA model. We find and classify all the stationary solutions of the model, as well as analytic approximations of them, both in the continuum and in the discrete limits. Our results explain the structure of the solutions reported by Theodorakopoulos et al. [Phys. Rev. Lett. 93, 258101 (2004)] and provide a way to proceed to the analysis of the generalized version of the model incorporating the genetic information.
作为从序列角度对DNA机械变性进行分析研究的第一步,我们在离散、有限且均匀的佩亚尔德 - 毕晓普DNA模型中研究稳定的、静态的解。我们找出并分类了该模型的所有静态解,以及它们在连续极限和离散极限下的解析近似。我们的结果解释了西奥多拉科普洛斯等人[《物理评论快报》93, 258101 (2004)]所报道的解的结构,并提供了一种方法来着手分析包含遗传信息的模型的广义版本。