Suppr超能文献

Combined magnetic and single-crystal X-ray structural study of the linear chain antiferromagnet [(CH3)4N][MnCl3] under varying pressure.

作者信息

Tancharakorn Somchai, Fabbiani Francesca P A, Allan David R, Kamenev Konstantin V, Robertson Neil

机构信息

Contribution from the Centre for Science at Extreme Conditions, School of Engineering and Electronics, School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom.

出版信息

J Am Chem Soc. 2006 Jul 19;128(28):9205-10. doi: 10.1021/ja061923i.

Abstract

The magnetic susceptibility and single-crystal X-ray structure of the one-dimensional Heisenberg antiferromagnetic chain tetramethylammonium manganese trichloride (TMMC) have been studied under pressure as a facile route to develop structure-property relationships. The X-ray structure of TMMC was determined at 0, 2.1, 3.8, 6.8, 12.2, and 17.0 kbar using diamond-anvil cell techniques and synchrotron radiation. The space group is confirmed to be P6(3)/m up to 17 kbar, and structural refinement shows that the Mn-Mn separations between and along the chains change by about 3.4 and 2.5%, respectively, over 17 kbar. A structural transition from hexagonal to monoclinic symmetry possibly occurs at 17 kbar, associated with a loss of crystal quality. Variable-temperature magnetic susceptibility data were taken at 0, 0.3, 1.5, 2.9, 4.0, 5.2, and 6.5 kbar and show that the intrachain coupling constant changes from -6.85 to -7.81 K over this range. The interchain coupling constant of -0.54 K can also be extracted from the Fisher model modified for interacting chains. The pressure-temperature diagram shows the slope of the intrachain antiferromagnetic coupling with pressure, DeltaT(IAF)/DeltaP, changes from 0.5 to 1.6 K/kbar at 2 kbar where the structure changes from P2(1)/a to P2(1)/m. Comparison of the magnetic and structural data are consistent with the power-law relationship developed by Bloch where J proportional, variant r-n, r = Mn...Mn separation and n approximately 10.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验