Suppr超能文献

A light and electron microscopical study of enkephalin-immunoreactive structures in the rat neostriatum after removal of the nigrostriatal dopaminergic pathway.

作者信息

Ingham C A, Hood S H, Arbuthnott G W

机构信息

Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, UK.

出版信息

Neuroscience. 1991;42(3):715-30. doi: 10.1016/0306-4522(91)90040-u.

Abstract

The pattern of enkephalin immunoreactivity was examined in the adult rat neostriatum, at various times after unilateral removal of the nigrostriatal dopamine input by 6-hydroxydopamine injection into the medial forebrain bundle. Animals were examined 12 days, 26 days or 13 months after the lesion. Enkephalin-immunoreactive synaptic boutons (n = 1018) in the control and the dopamine-depleted neostriatum were analysed in the electron microscope. The area of enkephalin-immunoreactive synaptic bouton profiles was significantly larger in the dopamine-depleted neostriatum and this increase was maximal in rats in which the lesion had been made 26 days or 13 months previously (50% increase). The synaptic specializations of these enkephalin-immunoreactive boutons were significantly longer in the neostriatum from the injected side. Dendritic shafts were the principal postsynaptic target of these boutons (67%) but dendritic spines (18%), perikarya (6.5%) and unidentifiable small dendrites or spines (8.5%) were also contacted. The proportions of enkephalin-immunoreactive boutons on the different postsynaptic targets were not altered by the 6-hydroxydopamine lesion. The increase in enkephalin immunoreactivity observed in the dopamine-depleted neostriatum in previous studies may be explained by the increase in the size of enkephalin-immunoreactive synaptic boutons found in the present ultrastructural investigation. The observations do not rule out the possibility that there is also an increase in the number of immunoreactive synaptic boutons, due to, for example, sprouting of the existing enkephalin-containing fibres.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验