Fernández-Alfonso Tomás, Kwan Ricky, Ryan Timothy A
Department of Biochemistry, The Weill Medical College of Cornell University, New York, New York 10021, USA.
Neuron. 2006 Jul 20;51(2):179-86. doi: 10.1016/j.neuron.2006.06.008.
During recycling of synaptic vesicles (SVs), the retrieval machinery faces the challenge of recapturing SV proteins in a timely and precise manner. The significant dilution factor that would result from equilibration of vesicle proteins with the much larger cell surface would make recapture by diffusional encounter with the endocytic retrieval machinery unlikely. If SV proteins exchanged with counterparts residing at steady state on the cell surface, the dilution problem would be largely avoided. In this scenario, during electrical activity, endocytosis would be driven by the concentration of a pre-existing pool of SVs residing on the axonal or synaptic surface rather than the heavily diluted postfusion vesicular pool. Using both live cell imaging of endogenous synaptotagmin Ia (sytIa) as well as pHluorin-tagged sytIa and VAMP-2, we show here that synaptic vesicle proteins interchange with a large pool on the cell axonal surface whose concentration is approximately 10-fold lower than that in SVs.
在突触小泡(SVs)的循环利用过程中,回收机制面临着及时、精确地重新捕获SV蛋白的挑战。由于小泡蛋白与大得多的细胞表面达到平衡而导致的显著稀释因子,使得通过与内吞回收机制的扩散相遇来重新捕获变得不太可能。如果SV蛋白与细胞表面处于稳态的对应物进行交换,那么稀释问题将在很大程度上得到避免。在这种情况下,在电活动期间,内吞作用将由存在于轴突或突触表面的预先存在的SV池的浓度驱动,而不是由大量稀释的融合后小泡池驱动。利用对内源突触结合蛋白Ia(sytIa)以及pHluorin标记的sytIa和VAMP-2的活细胞成像,我们在此表明,突触小泡蛋白与细胞轴突表面的一个大池进行交换,该池的浓度比SVs中的浓度低约10倍。