Ramirez Rosa, Borgis Daniel
Modélisation des Systèmes Moléculaires Complexes and LAE CNRS-UMR 8587, Université Evry-Val-d'Essonne, Bd François Mitterand, 91405 Evry, France.
J Phys Chem B. 2005 Apr 14;109(14):6754-63. doi: 10.1021/jp045453v.
We describe a density functional theory approach to solvation in molecular solvents. The solvation free energy of a complex solute can be obtained by direct minimization of a density functional, instead of the thermodynamic integration scheme necessary when using atomistic simulations. In the homogeneous reference fluid approximation, the expression of the free-energy functional relies on the knowledge of the direct correlation function of the pure solvent. After discussing general molecular solvents, we present a generic density functional describing a dipolar solvent and we show how it can be reduced to the conventional implicit solvent models when the solvent microscopic structure is neglected. With respect to those models, the functional includes additional effects such as the microscopic structure of the solvent, the dipolar saturation effect, and the nonlocal character of the dielectric constant. We also show how this functional can be minimized numerically on a three-dimensional grid around a solute of complex shape to provide, in a single shot, both the average solvent structure and the absolute solvation free energy.
我们描述了一种用于分子溶剂中溶剂化的密度泛函理论方法。复杂溶质的溶剂化自由能可通过直接最小化密度泛函来获得,而不是使用原子模拟时所需的热力学积分方案。在均匀参考流体近似中,自由能泛函的表达式依赖于纯溶剂的直接相关函数的知识。在讨论了一般分子溶剂之后,我们提出了一个描述偶极溶剂的通用密度泛函,并展示了在忽略溶剂微观结构时它如何简化为传统的隐式溶剂模型。相对于那些模型,该泛函包括额外的效应,如溶剂的微观结构、偶极饱和效应和介电常数的非局部特性。我们还展示了如何在复杂形状溶质周围的三维网格上对该泛函进行数值最小化,以便一次性提供平均溶剂结构和绝对溶剂化自由能。