Suppr超能文献

一种蛋白质辅因子与其靶RNA的两种不同结合模式。

Two distinct binding modes of a protein cofactor with its target RNA.

作者信息

Bokinsky Gregory, Nivón Lucas G, Liu Shixin, Chai Geqing, Hong Minh, Weeks Kevin M, Zhuang Xiaowei

机构信息

Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.

出版信息

J Mol Biol. 2006 Aug 25;361(4):771-84. doi: 10.1016/j.jmb.2006.06.048. Epub 2006 Jul 7.

Abstract

Like most cellular RNA enzymes, the bI5 group I intron requires binding by a protein cofactor to fold correctly. Here, we use single-molecule approaches to monitor the structural dynamics of the bI5 RNA in real time as it assembles with its CBP2 protein cofactor. These experiments show that CBP2 binds to the target RNA in two distinct modes with apparently opposite effects: a "non-specific" mode that forms rapidly and induces large conformational fluctuations in the RNA, and a "specific" mode that forms slowly and stabilizes the native RNA structure. The bI5 RNA folds though multiple pathways toward the native state, typically traversing dynamic intermediate states induced by non-specific binding of CBP2. These results suggest that the protein cofactor-assisted RNA folding involves sequential non-specific and specific protein-RNA interactions. The non-specific interaction potentially increases the local concentration of CBP2 and the number of conformational states accessible to the RNA, which may promote the formation of specific RNA-protein interactions.

摘要

与大多数细胞RNA酶一样,bI5 I组内含子需要与一种蛋白质辅因子结合才能正确折叠。在这里,我们使用单分子方法实时监测bI5 RNA与其CBP2蛋白质辅因子组装时的结构动态。这些实验表明,CBP2以两种明显相反的方式与靶RNA结合:一种“非特异性”方式,它迅速形成并诱导RNA中的大构象波动;另一种“特异性”方式,它形成缓慢并稳定天然RNA结构。bI5 RNA通过多条途径折叠成天然状态,通常会穿越由CBP2的非特异性结合诱导的动态中间状态。这些结果表明,蛋白质辅因子辅助的RNA折叠涉及顺序的非特异性和特异性蛋白质-RNA相互作用。非特异性相互作用可能会增加CBP2的局部浓度以及RNA可及的构象状态数量,这可能会促进特异性RNA-蛋白质相互作用的形成。

相似文献

1
Two distinct binding modes of a protein cofactor with its target RNA.
J Mol Biol. 2006 Aug 25;361(4):771-84. doi: 10.1016/j.jmb.2006.06.048. Epub 2006 Jul 7.
2
Protein-dependent transition states for ribonucleoprotein assembly.
J Mol Biol. 2001 Jun 22;309(5):1087-100. doi: 10.1006/jmbi.2001.4714.
3
Structural basis for the self-chaperoning function of an RNA collapsed state.
Biochemistry. 2004 Dec 7;43(48):15179-86. doi: 10.1021/bi048626f.
5
Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron.
Biochemistry. 1995 Jun 13;34(23):7728-38. doi: 10.1021/bi00023a020.
7
Assembly of a ribonucleoprotein catalyst by tertiary structure capture.
Science. 1996 Jan 19;271(5247):345-8. doi: 10.1126/science.271.5247.345.
8
Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein.
Mol Cell Biol. 1995 Dec;15(12):6971-8. doi: 10.1128/MCB.15.12.6971.
9
A collapsed non-native RNA folding state.
Nat Struct Biol. 2000 May;7(5):362-6. doi: 10.1038/75125.
10
Near native structure in an RNA collapsed state.
Biochemistry. 2003 Dec 2;42(47):13869-78. doi: 10.1021/bi035476k.

引用本文的文献

1
RiboDraw: semiautomated two-dimensional drawing of RNA tertiary structure diagrams.
NAR Genom Bioinform. 2021 Oct 14;3(4):lqab091. doi: 10.1093/nargab/lqab091. eCollection 2021 Dec.
3
A roadmap for rRNA folding and assembly during transcription.
Trends Biochem Sci. 2021 Nov;46(11):889-901. doi: 10.1016/j.tibs.2021.05.009. Epub 2021 Jun 24.
5
Alternate RNA Structures.
Cold Spring Harb Perspect Biol. 2020 Jan 2;12(1):a032425. doi: 10.1101/cshperspect.a032425.
6
7
The OB-fold proteins of the Trypanosoma brucei editosome execute RNA-chaperone activity.
Nucleic Acids Res. 2018 Nov 2;46(19):10353-10367. doi: 10.1093/nar/gky668.
8
Evolution of protein-coupled RNA dynamics during hierarchical assembly of ribosomal complexes.
Nat Commun. 2017 Sep 8;8(1):492. doi: 10.1038/s41467-017-00536-1.
9
Single-molecule Förster resonance energy transfer studies of RNA structure, dynamics and function.
Biophys Rev. 2009 Dec;1(4):161. doi: 10.1007/s12551-009-0018-3. Epub 2009 Nov 10.

本文引用的文献

1
2
Structural basis for the self-chaperoning function of an RNA collapsed state.
Biochemistry. 2004 Dec 7;43(48):15179-86. doi: 10.1021/bi048626f.
3
Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme.
Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):534-9. doi: 10.1073/pnas.2636333100. Epub 2004 Jan 2.
4
Roles of protein subunits in RNA-protein complexes: lessons from ribonuclease P.
Biopolymers. 2004 Jan;73(1):79-89. doi: 10.1002/bip.10521.
5
Near native structure in an RNA collapsed state.
Biochemistry. 2003 Dec 2;42(47):13869-78. doi: 10.1021/bi035476k.
6
Single-molecule measurement of protein folding kinetics.
Science. 2003 Aug 29;301(5637):1233-5. doi: 10.1126/science.1085399.
7
A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9308-13. doi: 10.1073/pnas.1233536100. Epub 2003 Jul 25.
8
Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme.
Science. 2003 Mar 21;299(5614):1892-5. doi: 10.1126/science.1081338.
10
RNA folding in vivo.
Curr Opin Struct Biol. 2002 Jun;12(3):296-300. doi: 10.1016/s0959-440x(02)00325-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验