Lees Nicholas S, Chen Dawei, Walsby Charles J, Behshad Elham, Frey Perry A, Hoffman Brian M
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
J Am Chem Soc. 2006 Aug 9;128(31):10145-54. doi: 10.1021/ja061282r.
Lysine 2,3-aminomutase (LAM) utilizes a [4Fe-4S] cluster, S-adenosyl-L-methionine (SAM), and pyridoxal 5'-phosphate (PLP) to isomerize L-alpha-lysine to L-beta-lysine. LAM is a member of the radical-SAM enzyme superfamily in which a [4Fe-4S]+ cluster reductively cleaves SAM to produce the 5'-deoxyadenosyl radical, which abstracts an H-atom from substrate to form 5'-deoxyadenosine (5'-Ado) and the alpha-Lys* radical (state 3 (Lys*)). This radical isomerizes to the beta-Lys* radical (state 4(Lys*)), which then abstracts an H-atom from 5'-Ado to form beta-lysine and the 5'-deoxyadenosyl radical; the latter then regenerates SAM. We use 13C, 1,2H, 31P, and 14N ENDOR to characterize the active site of LAM in intermediate states that contain the isomeric substrate radicals or analogues. With L-alpha-lysine as substrate, we monitor the state with beta-Lys*. In parallel, we use two substrate analogues that generate stable analogues of the alpha-Lys* radical: trans-4,5-dehydro-L-lysine (DHLys) and 4-thia-L-lysine (SLys). This first glimpse of the motions of active-site components during catalytic turnover suggests a possible major movement of PLP during catalysis. However, the principal focus of this work is on the relative positions of the carbons involved in H-atom transfer. We conclude that the active site facilitates hydrogen atom transfer by enforcing van der Waals contact between radicals and their reacting partners. This constraint enables the enzyme to minimize and even eliminate side reactions of highly reactive species such as the 5'-deoxyadensosyl radical.
赖氨酸2,3-氨基变位酶(LAM)利用一个[4Fe-4S]簇、S-腺苷-L-甲硫氨酸(SAM)和磷酸吡哆醛(PLP)将L-α-赖氨酸异构化为L-β-赖氨酸。LAM是自由基-SAM酶超家族的成员,其中一个[4Fe-4S]+簇将SAM还原裂解以产生5'-脱氧腺苷自由基,该自由基从底物中提取一个氢原子以形成5'-脱氧腺苷(5'-Ado)和α-Lys自由基(状态3(Lys))。这个自由基异构化为β-Lys自由基(状态4(Lys)),然后它从5'-Ado中提取一个氢原子以形成β-赖氨酸和5'-脱氧腺苷自由基;后者随后再生SAM。我们使用13C、1,2H、31P和14N电子核双共振来表征LAM在含有异构底物自由基或类似物的中间状态下的活性位点。以L-α-赖氨酸为底物,我们监测含有β-Lys的状态。同时,我们使用两种底物类似物,它们产生α-Lys自由基的稳定类似物:反式-4,5-脱氢-L-赖氨酸(DHLys)和4-硫代-L-赖氨酸(SLys)。对催化周转过程中活性位点组分运动的首次观察表明,PLP在催化过程中可能发生了重大移动。然而,这项工作的主要重点是参与氢原子转移的碳原子的相对位置。我们得出结论,活性位点通过加强自由基与其反应伙伴之间的范德华接触来促进氢原子转移。这种限制使酶能够最小化甚至消除高反应性物种(如5'-脱氧腺苷自由基)的副反应。