Suppr超能文献

α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体在体内调节依赖于经验的树突状分支生长。

AMPA receptors regulate experience-dependent dendritic arbor growth in vivo.

作者信息

Haas Kurt, Li Jianli, Cline Hollis T

机构信息

Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12127-31. doi: 10.1073/pnas.0602670103. Epub 2006 Aug 1.

Abstract

The size and shape of neuronal dendritic arbors affect the number and type of synaptic inputs, as well as the complexity and function of brain circuits. In the intact brain, dendritic arbor growth and the development of excitatory glutamatergic synapse are concurrent. Consequently, it has been difficult to resolve whether synaptic inputs drive dendritic arbor development. Here, we test the role of AMPA receptor (AMPAR)-mediated glutamatergic transmission in dendrite growth by expressing peptides corresponding to the intracellular C-terminal domains of AMPAR subunits GluR1 (GluR1Ct) and GluR2 (GluR2Ct) in optic tectal neurons of the Xenopus retinotectal system. These peptides significantly reduce AMPAR synaptic transmission in transfected neurons while leaving visual system circuitry intact. Daily in vivo imaging over 5 days revealed that GluR1Ct or GluR2Ct expression dramatically impaired dendrite growth, resulting in less complex arbors than controls. Time-lapse images collected at 2-h intervals over 6 h show that both GluR1Ct and GluR2Ct decrease branch lifetimes. Ultrastructural analysis indicates that synapses formed onto neurons expressing the GluRCt are less mature than synapses onto control neurons. These data suggest that the failure to form complex arbors is due to reduced stabilization of new synapses and dendritic branches. Although visual stimulation increases dendritic arbor growth rates in control tectal neurons, a weak postsynaptic response to visual experience in GluRCt-expressing cells leads to retraction of branches. These results indicate that AMPAR-mediated transmission underlies experience-dependent dendritic arbor growth by stabilizing branches, and support a competition-based model for dendrite growth.

摘要

神经元树突分支的大小和形状会影响突触输入的数量和类型,以及脑回路的复杂性和功能。在完整的大脑中,树突分支的生长与兴奋性谷氨酸能突触的发育是同时进行的。因此,一直难以确定突触输入是否驱动树突分支的发育。在这里,我们通过在非洲爪蟾视网膜顶盖系统的视顶盖神经元中表达与AMPA受体(AMPAR)亚基GluR1(GluR1Ct)和GluR2(GluR2Ct)的细胞内C末端结构域相对应的肽,来测试AMPA受体介导的谷氨酸能传递在树突生长中的作用。这些肽显著降低了转染神经元中的AMPAR突触传递,同时保持视觉系统回路完整。连续5天的体内成像显示,GluR1Ct或GluR2Ct的表达显著损害了树突生长,导致树突分支比对照组更简单。在6小时内每隔2小时收集的延时图像显示,GluR1Ct和GluR2Ct都缩短了分支寿命。超微结构分析表明,在表达GluRCt的神经元上形成的突触比在对照神经元上形成的突触成熟度更低。这些数据表明,无法形成复杂的树突分支是由于新突触和树突分支的稳定性降低。尽管视觉刺激会增加对照顶盖神经元中树突分支的生长速度,但在表达GluRCt的细胞中,对视觉经验的突触后反应较弱会导致分支回缩。这些结果表明,AMPAR介导的传递通过稳定分支来支持依赖经验的树突分支生长,并支持基于竞争的树突生长模型。

相似文献

1
AMPA receptors regulate experience-dependent dendritic arbor growth in vivo.
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12127-31. doi: 10.1073/pnas.0602670103. Epub 2006 Aug 1.
2
Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo.
J Neurosci. 1998 Oct 1;18(19):7836-46. doi: 10.1523/JNEUROSCI.18-19-07836.1998.
3
Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivo.
Dev Neurobiol. 2008 Sep 15;68(11):1315-24. doi: 10.1002/dneu.20659.
4
7
Time-lapse in vivo imaging of the morphological development of Xenopus optic tectal interneurons.
J Comp Neurol. 2003 May 12;459(4):392-406. doi: 10.1002/cne.10618.
8
BDNF increases synapse density in dendrites of developing tectal neurons in vivo.
Development. 2006 Jul;133(13):2477-86. doi: 10.1242/dev.02409. Epub 2006 May 25.
9
Stabilization of dendritic arbor structure in vivo by CaMKII.
Science. 1998 Jan 9;279(5348):222-6. doi: 10.1126/science.279.5348.222.
10
Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
J Neurochem. 2005 Sep;94(6):1728-38. doi: 10.1111/j.1471-4159.2005.03334.x. Epub 2005 Jul 25.

引用本文的文献

2
Cpeb1 remodels cell type-specific translational program to promote fear extinction.
Sci Adv. 2025 Jan 10;11(2):eadr8687. doi: 10.1126/sciadv.adr8687.
3
Extracellular molecular signals shaping dendrite architecture during brain development.
Front Cell Dev Biol. 2023 Dec 7;11:1254589. doi: 10.3389/fcell.2023.1254589. eCollection 2023.
4
Characterization of Na currents regulating intrinsic excitability of optic tectal neurons.
Life Sci Alliance. 2023 Nov 2;7(1). doi: 10.26508/lsa.202302232. Print 2024 Jan.
5
Excitation-transcription coupling, neuronal gene expression and synaptic plasticity.
Nat Rev Neurosci. 2023 Nov;24(11):672-692. doi: 10.1038/s41583-023-00742-5. Epub 2023 Sep 29.
7
Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging.
Cell. 2021 Sep 30;184(20):5107-5121.e14. doi: 10.1016/j.cell.2021.08.030. Epub 2021 Sep 21.
8
Imaging Structural and Functional Dynamics in Neurons.
Cold Spring Harb Protoc. 2022 Feb 1;2022(2):pdb.top106773. doi: 10.1101/pdb.top106773.
9
Reelin restricts dendritic growth of interneurons in the neocortex.
Development. 2021 Sep 1;148(17). doi: 10.1242/dev.199718. Epub 2021 Sep 6.

本文引用的文献

1
Stabilization of axon branch dynamics by synaptic maturation.
J Neurosci. 2006 Mar 29;26(13):3594-603. doi: 10.1523/JNEUROSCI.0069-06.2006.
2
The level and integrity of synaptic input regulates dendrite structure.
J Neurosci. 2006 Feb 1;26(5):1539-50. doi: 10.1523/JNEUROSCI.3807-05.2006.
3
The diacylglycerol-binding protein alpha1-chimaerin regulates dendritic morphology.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1924-9. doi: 10.1073/pnas.0510655103. Epub 2006 Jan 30.
4
Cadherins: actin with the cytoskeleton to form synapses.
Neuron. 2005 Jul 21;47(2):175-8. doi: 10.1016/j.neuron.2005.06.024.
5
Regulation of axon growth in vivo by activity-based competition.
Nature. 2005 Apr 21;434(7036):1022-6. doi: 10.1038/nature03409.
6
Postsynaptic receptor trafficking underlying a form of associative learning.
Science. 2005 Apr 1;308(5718):83-8. doi: 10.1126/science.1103944. Epub 2005 Mar 3.
7
Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses.
Neuron. 2004 Dec 2;44(5):749-57. doi: 10.1016/j.neuron.2004.11.011.
8
Temporally distinct demands for classic cadherins in synapse formation and maturation.
Mol Cell Neurosci. 2004 Dec;27(4):509-21. doi: 10.1016/j.mcn.2004.08.008.
9
Cell adhesion molecules in synapse formation.
J Neurosci. 2004 Oct 20;24(42):9244-9. doi: 10.1523/JNEUROSCI.3339-04.2004.
10
Rho GTPases and activity-dependent dendrite development.
Curr Opin Neurobiol. 2004 Jun;14(3):297-304. doi: 10.1016/j.conb.2004.05.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验