Bolton Christopher, Paul Carolyn
Centre for Biochemical Pharmacology and Experimental Pathology, John Vane Science Centre, St Bartholomew's Hospital Medical School, Charterhouse Square, London EC1M 6BQ, UK.
Mediators Inflamm. 2006;2006(2):93684. doi: 10.1155/MI/2006/93684.
Multiple sclerosis (MS) is a chronic demyelinating disease of the human central nervous system (CNS). The condition predominantly affects young adults and is characterised by immunological and inflammatory changes in the periphery and CNS that contribute to neurovascular disruption, haemopoietic cell invasion of target tissues, and demyelination of nerve fibres which culminate in neurological deficits that relapse and remit or are progressive. The main features of MS can be reproduced in the inducible animal counterpart, experimental autoimmune encephalomyelitis (EAE). The search for new MS treatments invariably employs EAE to determine drug activity and provide a rationale for exploring clinical efficacy. The preclinical development of compounds for MS has generally followed a conventional, immunotherapeutic route. However, over the past decade, a group of compounds that suppress EAE but have no apparent immunomodulatory activity have emerged. These drugs interact with the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-isoxazolepropionic acid (AMPA)/kainate family of glutamate receptors reported to control neurovascular permeability, inflammatory mediator synthesis, and resident glial cell functions including CNS myelination. The review considers the importance of the glutamate receptors in EAE and MS pathogenesis. The use of receptor antagonists to control EAE is also discussed together with the possibility of therapeutic application in demyelinating disease.
多发性硬化症(MS)是一种人类中枢神经系统(CNS)的慢性脱髓鞘疾病。该病主要影响年轻人,其特征是外周和中枢神经系统的免疫和炎症变化,这些变化导致神经血管破坏、造血细胞侵入靶组织以及神经纤维脱髓鞘,最终导致神经功能缺损,出现复发缓解型或进行性症状。MS的主要特征可在诱导性动物模型——实验性自身免疫性脑脊髓炎(EAE)中重现。寻找新的MS治疗方法总是采用EAE来确定药物活性,并为探索临床疗效提供理论依据。用于MS的化合物的临床前开发通常遵循传统的免疫治疗途径。然而,在过去十年中,出现了一组能够抑制EAE但没有明显免疫调节活性的化合物。这些药物与N-甲基-D-天冬氨酸(NMDA)和α-氨基-3-羟基-5-异恶唑丙酸(AMPA)/海人藻酸家族的谷氨酸受体相互作用,据报道这些受体可控制神经血管通透性、炎症介质合成以及包括中枢神经系统髓鞘形成在内的驻留神经胶质细胞功能。本文综述探讨了谷氨酸受体在EAE和MS发病机制中的重要性。还讨论了使用受体拮抗剂控制EAE以及在脱髓鞘疾病中进行治疗应用的可能性。