Pye Deborah, Kyriakouli Dimitra S, Taylor Geoffrey A, Johnson Riem, Elstner Matthias, Meunier Brigitte, Chrzanowska-Lightowlers Zofia M A, Taylor Robert W, Turnbull Douglass M, Lightowlers Robert N
Mitochondrial Research Group, University of Newcastle upon Tyne, School of Neurology, Neurobiology and Psychiatry, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
Nucleic Acids Res. 2006 Aug 2;34(13):e95. doi: 10.1093/nar/gkl516.
The human mitochondrial genome (mtDNA) encodes polypeptides that are critical for coupling oxidative phosphorylation. Our detailed understanding of the molecular processes that mediate mitochondrial gene expression and the structure-function relationships of the OXPHOS components could be greatly improved if we were able to transfect mitochondria and manipulate mtDNA in vivo. Increasing our knowledge of this process is not merely of fundamental importance, as mutations of the mitochondrial genome are known to cause a spectrum of clinical disorders and have been implicated in more common neurodegenerative disease and the ageing process. In organellar or in vitro reconstitution studies have identified many factors central to the mechanisms of mitochondrial gene expression, but being able to investigate the molecular aetiology of a limited number of cell lines from patients harbouring mutated mtDNA has been enormously beneficial. In the absence of a mechanism for manipulating mtDNA, a much larger pool of pathogenic mtDNA mutations would increase our knowledge of mitochondrial gene expression. Colonic crypts from ageing individuals harbour mutated mtDNA. Here we show that by generating cytoplasts from colonocytes, standard fusion techniques can be used to transfer mtDNA into rapidly dividing immortalized cells and, thereby, respiratory-deficient transmitochondrial cybrids can be isolated. A simple screen identified clones that carried putative pathogenic mutations in MTRNR1, MTRNR2, MTCOI and MTND2, MTND4 and MTND6. This method can therefore be exploited to produce a library of cell lines carrying pathogenic human mtDNA for further study.
人类线粒体基因组(mtDNA)编码对氧化磷酸化偶联至关重要的多肽。如果我们能够在体内转染线粒体并操纵mtDNA,那么我们对介导线粒体基因表达的分子过程以及氧化磷酸化(OXPHOS)组件的结构 - 功能关系的详细理解将会得到极大的提升。增加我们对这一过程的了解不仅具有根本重要性,因为已知线粒体基因组的突变会导致一系列临床疾病,并且与更常见的神经退行性疾病和衰老过程有关。细胞器内或体外重建研究已经确定了许多线粒体基因表达机制的核心因素,但能够研究来自携带突变mtDNA患者的有限数量细胞系的分子病因学已经带来了极大的益处。在缺乏操纵mtDNA机制的情况下,大量的致病性mtDNA突变将增加我们对线粒体基因表达的了解。衰老个体的结肠隐窝中存在突变的mtDNA。在这里,我们表明,通过从结肠细胞生成胞质体,可以使用标准融合技术将mtDNA转移到快速分裂的永生化细胞中,从而可以分离出呼吸缺陷型的线粒体杂交细胞。一个简单的筛选鉴定出了在MTRNR1、MTRNR2、MTCOI以及MTND2、MTND4和MTND6中携带推定致病性突变的克隆。因此,这种方法可用于构建携带致病性人类mtDNA的细胞系文库以供进一步研究。