Suppr超能文献

用于流感病毒监测的FluChip诊断微阵列的实验评估。

Experimental evaluation of the FluChip diagnostic microarray for influenza virus surveillance.

作者信息

Townsend Michael B, Dawson Erica D, Mehlmann Martin, Smagala James A, Dankbar Daniela M, Moore Chad L, Smith Catherine B, Cox Nancy J, Kuchta Robert D, Rowlen Kathy L

机构信息

Department of Chemistry and Biochemistry, UCB 215, University of Colorado, Boulder, CO 80309, USA.

出版信息

J Clin Microbiol. 2006 Aug;44(8):2863-71. doi: 10.1128/JCM.00134-06.

Abstract

Global surveillance of influenza is critical for improvements in disease management and is especially important for early detection, rapid intervention, and a possible reduction of the impact of an influenza pandemic. Enhanced surveillance requires rapid, robust, and inexpensive analytical techniques capable of providing a detailed analysis of influenza virus strains. Low-density oligonucleotide microarrays with highly multiplexed "signatures" for influenza viruses offer many of the desired characteristics. However, the high mutability of the influenza virus represents a design challenge. In order for an influenza virus microarray to be of utility, it must provide information for a wide range of viral strains and lineages. The design and characterization of an influenza microarray, the FluChip-55 microarray, for the relatively rapid identification of influenza A virus subtypes H1N1, H3N2, and H5N1 are described here. In this work, a small set of sequences was carefully selected to exhibit broad coverage for the influenza A and B viruses currently circulating in the human population as well as the avian A/H5N1 virus that has become enzootic in poultry in Southeast Asia and that has recently spread to Europe. A complete assay involving extraction and amplification of the viral RNA was developed and tested. In a blind study of 72 influenza virus isolates, RNA from a wide range of influenza A and B viruses was amplified, hybridized, labeled with a fluorophore, and imaged. The entire analysis time was less than 12 h. The combined results for two assays provided the absolutely correct types and subtypes for an average of 72% of the isolates, the correct type and partially correct subtype information for 13% of the isolates, the correct type only for 10% of the isolates, false-negative signals for 4% of the isolates, and false-positive signals for 1% of the isolates. In the overwhelming majority of cases in which incomplete subtyping was observed, the failure was due to the nucleic acid amplification step rather than limitations in the microarray.

摘要

全球流感监测对于改善疾病管理至关重要,对于早期发现、快速干预以及可能减轻流感大流行的影响尤为重要。加强监测需要快速、可靠且廉价的分析技术,能够对流感病毒株进行详细分析。具有针对流感病毒高度多重“特征”的低密度寡核苷酸微阵列具备许多所需特性。然而,流感病毒的高变异性带来了设计挑战。为使流感病毒微阵列有用,它必须能为广泛的病毒株和谱系提供信息。本文描述了一种用于相对快速鉴定甲型流感病毒H1N1、H3N2和H5N1亚型的流感微阵列——FluChip - 55微阵列的设计与特性。在这项工作中,精心挑选了一小部分序列,以广泛覆盖当前在人群中传播的甲型和乙型流感病毒,以及在东南亚家禽中已成为地方性流行且最近传播到欧洲的禽甲型H5N1病毒。开发并测试了一种完整的检测方法,包括病毒RNA的提取和扩增。在对72株流感病毒分离株的盲测中,对来自多种甲型和乙型流感病毒的RNA进行了扩增、杂交、用荧光团标记并成像。整个分析时间不到12小时。两种检测方法的综合结果显示,平均72%的分离株得到了完全正确的类型和亚型,13%的分离株得到了正确的类型和部分正确的亚型信息,10%的分离株仅得到了正确的类型,4%的分离株出现假阴性信号,1%的分离株出现假阳性信号。在绝大多数观察到亚型分型不完全的情况下,失败是由于核酸扩增步骤而非微阵列的局限性。

相似文献

9
Methods for molecular surveillance of influenza.流感分子监测方法。
Expert Rev Anti Infect Ther. 2010 May;8(5):517-27. doi: 10.1586/eri.10.24.

引用本文的文献

2
[Respiratory viruses: old and new. Review of diagnostic methods].[呼吸道病毒:新旧病毒。诊断方法综述]
Enferm Infecc Microbiol Clin. 2007 Oct;25:60-65. doi: 10.1157/13111839. Epub 2009 Jan 6.
6
Chapter 13 Recent Advances and Future Needs in Environmental Virology.第13章 环境病毒学的最新进展与未来需求
Perspect Med Virol. 2007;17:259-284. doi: 10.1016/S0168-7069(07)17013-0. Epub 2007 Sep 6.

本文引用的文献

3
4
ConFind: a robust tool for conserved sequence identification.ConFind:一种用于保守序列识别的强大工具。
Bioinformatics. 2005 Dec 15;21(24):4420-2. doi: 10.1093/bioinformatics/bti719. Epub 2005 Oct 20.
5
Transmission of equine influenza virus to dogs.马流感病毒向犬类的传播。
Science. 2005 Oct 21;310(5747):482-5. doi: 10.1126/science.1117950. Epub 2005 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验