Yu Shin-Yi, Wu Sz-Wei, Khoo Kay-Hooi
Institute of Biological Chemistry, Academia Sinica, Taiwan.
Glycoconj J. 2006 Jul;23(5-6):355-69. doi: 10.1007/s10719-006-8492-3.
Concerted MALDI-MS profiling and CID MS/MS sequencing of permethylated glycans is one of the most effective approaches for high throughput glycomics applications. In essence, the identification of larger complex type N-glycans necessitates an unambiguous definition of any modification on the trimannosyl core and the complement of non-reducing terminal sequences which constitute the respective antennary structures. Permethylation not only affords analyses of both neutral and sialylated glycans at comparable ease and sensitivity but also yields more sequence-informative fragmentation pattern. Facile glycosidic cleavages directed mostly at N-acetylglucosamine under low energy CID, as implemented on a quadrupole/time-of-flight (Q/TOF) instrument, often afford multiple losses of the attached antenna resulting in characteristic ions related to the number of antennary branches on the trimannosyl core. Non-reducing terminal epitopes can be easily deduced but information on the linkage specific substituent on the terminal units is often missing. The high energy CID MS/MS afforded by TOF/TOF instrument can fill in the gap by giving an array of additional cross-ring and satellite ions. Glycosidic cleavages occurring specifically in concert with loss of 2-linked or 3-linked substituents provide an effective way to identify the branch-specific antennary extension. These characteristics are shown here to be effective in deriving the sequences of additionally galactosylated, sialylated and fucosylated terminal N-acetyllactosamine units and their antennary location. Together, a highly reproducible fragmentation pattern can be formulated to simplify spectral assignment. This work also provides first real examples of sequencing multiply sialylated complex type N-glycans by high energy CID on a TOF/TOF instrument.
对全甲基化聚糖进行协同基质辅助激光解吸电离质谱(MALDI-MS)分析和碰撞诱导解离串联质谱(CID MS/MS)测序是高通量糖组学应用中最有效的方法之一。本质上,要鉴定更大的复合型N-聚糖,就需要明确三甘露糖核心上任何修饰的定义以及构成各自天线结构的非还原末端序列的互补情况。全甲基化不仅能以相当的简便性和灵敏度对中性和唾液酸化聚糖进行分析,还能产生更多具有序列信息的碎片模式。在四极杆/飞行时间(Q/TOF)仪器上实施的低能CID条件下,主要针对N-乙酰葡糖胺的易发生糖苷键裂解,常常会导致连接的天线多次丢失,从而产生与三甘露糖核心上天线分支数量相关的特征离子。非还原末端表位很容易推导出来,但末端单元上连接特异性取代基的信息往往缺失。飞行时间串联质谱(TOF/TOF)仪器提供的高能CID MS/MS可以通过给出一系列额外的跨环离子和卫星离子来填补这一空白。与2-连接或3-连接取代基丢失同时发生的特异性糖苷键裂解提供了一种识别分支特异性天线延伸的有效方法。此处表明,这些特征对于推导额外半乳糖基化、唾液酸化和岩藻糖基化的末端N-乙酰乳糖胺单元的序列及其天线位置是有效的。总之,可以制定出高度可重复的碎片模式以简化谱图归属。这项工作还首次提供了在TOF/TOF仪器上通过高能CID对多重唾液酸化的复合型N-聚糖进行测序的实际例子。