Suppr超能文献

小脑皮质分子层抑制作用呈矢状旁区组织分布。

Cerebellar cortical molecular layer inhibition is organized in parasagittal zones.

作者信息

Gao Wangcai, Chen Gang, Reinert Kenneth C, Ebner Timothy J

机构信息

Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

J Neurosci. 2006 Aug 9;26(32):8377-87. doi: 10.1523/JNEUROSCI.2434-06.2006.

Abstract

Molecular layer inhibitory interneurons generate on-beam and off-beam inhibition in the cerebellar cortex that is hypothesized to control the timing and/or spatial patterning of Purkinje cell discharge. On- and off-beam inhibition has been assumed to be spatially uniform and continuous within a folium. Using flavoprotein autofluorescence optical imaging in the mouse cerebellar cortex in vivo, this study demonstrates that the inhibition evoked by parallel fiber and peripheral stimulation results in parasagittal bands of decreases in fluorescence that correspond to zebrin II-positive bands. The parasagittal bands of decreased fluorescence are abolished by GABA(A) antagonists and reflect the activity of molecular layer interneurons on their targets. The same banding pattern was observed using Ca2+ imaging. The bands produce spatially specific decreases in the responses to peripheral input. Therefore, molecular layer inhibition is compartmentalized into zebrin II parasagittal domains that differentially modulate the spatial pattern of cerebellar cortical activity.

摘要

分子层抑制性中间神经元在小脑皮质中产生束上和束下抑制,据推测这种抑制可控制浦肯野细胞放电的时间和/或空间模式。束上和束下抑制被认为在一个小叶内是空间均匀且连续的。利用体内小鼠小脑皮质的黄素蛋白自发荧光光学成像,本研究表明平行纤维和外周刺激诱发的抑制导致荧光降低的矢状旁带,这些带与zebrin II阳性带相对应。荧光降低的矢状旁带被GABA(A)拮抗剂消除,反映了分子层中间神经元对其靶标的活性。使用Ca2+成像观察到相同的带状模式。这些带在外周输入的反应中产生空间特异性降低。因此,分子层抑制被分隔到zebrin II矢状旁域中,这些域差异性地调节小脑皮质活动的空间模式。

相似文献

1
Cerebellar cortical molecular layer inhibition is organized in parasagittal zones.
J Neurosci. 2006 Aug 9;26(32):8377-87. doi: 10.1523/JNEUROSCI.2434-06.2006.
4
On the stationary state of a network of inhibitory spiking neurons.
J Comput Neurosci. 2008 Feb;24(1):105-12. doi: 10.1007/s10827-007-0049-3. Epub 2007 Jul 13.
5
Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo.
J Neurosci Res. 2007 Nov 15;85(15):3221-32. doi: 10.1002/jnr.21348.
6
Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex.
J Neurophysiol. 2007 Jan;97(1):248-63. doi: 10.1152/jn.01098.2005. Epub 2006 Oct 18.
7
Sensory stimulus evokes inhibition rather than excitation in cerebellar Purkinje cells in vivo in mice.
Neurosci Lett. 2011 Jan 7;487(2):182-6. doi: 10.1016/j.neulet.2010.10.018. Epub 2010 Oct 19.
8
Synchrony is stubborn in feedforward cortical networks.
Nat Neurosci. 2003 Jun;6(6):543-4. doi: 10.1038/nn0603-543.
9
Development of GABA innervation in the cerebral and cerebellar cortices.
Nat Rev Neurosci. 2007 Sep;8(9):673-86. doi: 10.1038/nrn2188.
10
Early neuronal inhibition sculpts adult cortical interhemispheric connectivity.
Trends Neurosci. 2024 Sep;47(9):667-668. doi: 10.1016/j.tins.2024.08.002. Epub 2024 Aug 13.

引用本文的文献

1
GABA, Glx, and GSH in the cerebellum: their role in motor performance and learning across age groups.
Front Aging Neurosci. 2025 Jul 3;17:1626417. doi: 10.3389/fnagi.2025.1626417. eCollection 2025.
4
A dual Purkinje cell rate and synchrony code sculpts reach kinematics.
bioRxiv. 2023 Jul 12:2023.07.12.548720. doi: 10.1101/2023.07.12.548720.
6
Postsynaptic plasticity of Purkinje cells in mice is determined by molecular identity.
Commun Biol. 2022 Dec 3;5(1):1328. doi: 10.1038/s42003-022-04283-y.
7
Bidirectional learning in upbound and downbound microzones of the cerebellum.
Nat Rev Neurosci. 2021 Feb;22(2):92-110. doi: 10.1038/s41583-020-00392-x. Epub 2020 Nov 17.
8
Cerebellar molecular layer interneurons are dispensable for cued and contextual fear conditioning.
Sci Rep. 2020 Nov 17;10(1):20000. doi: 10.1038/s41598-020-76729-4.
9
Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit.
Front Mol Neurosci. 2019 Nov 7;12:267. doi: 10.3389/fnmol.2019.00267. eCollection 2019.
10
Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control.
J Physiol. 2019 May;597(9):2483-2514. doi: 10.1113/JP277413. Epub 2019 Apr 11.

本文引用的文献

2
In vivo calcium imaging of circuit activity in cerebellar cortex.
J Neurophysiol. 2005 Aug;94(2):1636-44. doi: 10.1152/jn.01013.2004. Epub 2005 Apr 20.
3
Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells.
J Physiol. 2005 Mar 1;563(Pt 2):369-78. doi: 10.1113/jphysiol.2004.075028. Epub 2004 Dec 21.
4
Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo.
J Neurophysiol. 2004 Jul;92(1):199-211. doi: 10.1152/jn.01275.2003. Epub 2004 Feb 25.
5
Dissociation of spikes, synaptic activity, and activity-dependent increments in rat cerebellar blood flow by tonic synaptic inhibition.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16000-5. doi: 10.1073/pnas.2635195100. Epub 2003 Dec 12.
8
POSTSYNAPTIC INHIBITION OF CEREBELLAR PURKINJE CELLS.
J Neurophysiol. 1964 Nov;27:1138-53. doi: 10.1152/jn.1964.27.6.1138.
9
10
In vivo two-photon calcium imaging of neuronal networks.
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7319-24. doi: 10.1073/pnas.1232232100. Epub 2003 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验