Otsuka Hiromi, Okabe Yutaka, Nomura Kiyohide
Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011104. doi: 10.1103/PhysRevE.74.011104. Epub 2006 Jul 11.
We investigate the triangular-lattice antiferromagnetic Ising model with a spatially anisotropic next-nearest-neighbor ferromagnetic coupling, which was first discussed by Kitatani and Oguchi. By employing the effective geometric factor, we analyze the scaling dimensions of the operators around the Berezinskii-Kosterlitz-Thouless (BKT) transition lines, and determine the global phase diagram. Our numerical data exhibit that two types of BKT-transition lines separate the intermediate critical region from the ordered and disordered phases, and they do not merge into a single curve in the antiferromagnetic region. We also estimate the central charge and perform some consistency checks among scaling dimensions in order to provide the evidence of the six-state clock universality. Further, we provide an analysis of the shapes of boundaries based on the crossover argument.
我们研究了具有空间各向异性次近邻铁磁耦合的三角晶格反铁磁伊辛模型,该模型最早由北谷和尾口讨论。通过采用有效几何因子,我们分析了围绕贝雷津斯基 - 科斯特利茨 - Thouless(BKT)转变线的算符的标度维数,并确定了全局相图。我们的数值数据表明,两种类型的BKT转变线将中间临界区域与有序相和无序相分隔开,并且它们在反铁磁区域中不会合并为一条单一曲线。我们还估计了中心荷,并对标度维数进行了一些一致性检验,以提供六态时钟普适性的证据。此外,我们基于交叉论证对边界形状进行了分析。