Remedi M S, Rocheleau J V, Tong A, Patton B L, McDaniel M L, Piston D W, Koster J C, Nichols C G
Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
Diabetologia. 2006 Oct;49(10):2368-78. doi: 10.1007/s00125-006-0367-4. Epub 2006 Aug 19.
AIMS/HYPOTHESIS: ATP-sensitive K(+) (K(ATP)) channels couple glucose metabolism to insulin secretion in pancreatic beta cells. In humans, loss-of-function mutations of beta cell K(ATP) subunits (SUR1, encoded by the gene ABCC8, or Kir6.2, encoded by the gene KCNJ11) cause congenital hyperinsulinaemia. Mice with dominant-negative reduction of beta cell K(ATP) (Kir6.2[AAA]) exhibit hyperinsulinism, whereas mice with zero K(ATP) (Kir6.2(-/-)) show transient hyperinsulinaemia as neonates, but are glucose-intolerant as adults. Thus, we propose that partial loss of beta cell K(ATP) in vivo causes insulin hypersecretion, but complete absence may cause insulin secretory failure.
Heterozygous Kir6.2(+/-) and SUR1(+/-) animals were generated by backcrossing from knockout animals. Glucose tolerance in intact animals was determined following i.p. loading. Glucose-stimulated insulin secretion (GSIS), islet K(ATP) conductance and glucose dependence of intracellular Ca(2+) were assessed in isolated islets.
In both of the mechanistically distinct models of reduced K(ATP) (Kir6.2(+/-) and SUR1(+/-)), K(ATP) density is reduced by approximately 60%. While both Kir6.2(-/-) and SUR1(-/-) mice are glucose-intolerant and have reduced glucose-stimulated insulin secretion, heterozygous Kir6.2(+/-) and SUR1(+/-) mice show enhanced glucose tolerance and increased GSIS, paralleled by a left-shift in glucose dependence of intracellular Ca(2+) oscillations.
CONCLUSIONS/INTERPRETATION: The results confirm that incomplete loss of beta cell K(ATP) in vivo underlies a hyperinsulinaemic phenotype, whereas complete loss of K(ATP) underlies eventual secretory failure.
目的/假设:ATP敏感性钾离子(K(ATP))通道将胰腺β细胞中的葡萄糖代谢与胰岛素分泌相偶联。在人类中,β细胞K(ATP)亚基(由基因ABCC8编码的SUR1或由基因KCNJ11编码的Kir6.2)的功能丧失突变会导致先天性高胰岛素血症。β细胞K(ATP)呈显性负性降低(Kir6.2[AAA])的小鼠表现出高胰岛素血症,而K(ATP)为零的小鼠(Kir6.2(-/-))在新生儿期表现出短暂的高胰岛素血症,但成年后对葡萄糖不耐受。因此,我们提出,体内β细胞K(ATP)的部分丧失会导致胰岛素分泌过多,而完全缺失可能会导致胰岛素分泌衰竭。
通过从基因敲除动物回交产生杂合的Kir6.2(+/-)和SUR1(+/-)动物。腹腔注射葡萄糖负荷后,测定完整动物的葡萄糖耐量。在分离的胰岛中评估葡萄糖刺激的胰岛素分泌(GSIS)、胰岛K(ATP)电导和细胞内Ca(2+)的葡萄糖依赖性。
在两种机制不同的K(ATP)降低模型(Kir6.2(+/-)和SUR1(+/-))中,K(ATP)密度均降低约60%。虽然Kir6.2(-/-)和SUR1(-/-)小鼠均对葡萄糖不耐受且葡萄糖刺激的胰岛素分泌减少,但杂合的Kir6.2(+/-)和SUR1(+/-)小鼠表现出增强的葡萄糖耐量和增加的GSIS,同时细胞内Ca(2+)振荡的葡萄糖依赖性向左移位。
结论/解读:结果证实,体内β细胞K(ATP)的不完全丧失是高胰岛素血症表型的基础,而K(ATP)的完全丧失是最终分泌衰竭的基础。