Leclerc D, Brakier-Gingras L
Département de Biochimie, Université de Montréal, Québec, Canada.
Biochem Cell Biol. 1990 Jan;68(1):169-79. doi: 10.1139/o90-023.
Various approaches have been developed to study how mutations in Escherichia coli ribosomal RNA affect the function of the ribosome. Most of them are in vivo approaches, where mutations are introduced in a specialized plasmid harboring the ribosomal RNA genes. The mutated plasmids are then expressed in an appropriate host, where they can confer resistance to antibiotics whose target is the ribosome. Conditions can be used where the host ribosomal RNA genes or the host ribosomes are selectively inactivated, and the effect of the mutations on ribosome assembly and function can be studied. Another approach, which has been developed mainly with 16S ribosomal RNA, can be used entirely in vitro. In this approach, a plasmid has been constructed which contains the 16S ribosomal RNA gene under control of a T7 promoter. Mutations can be introduced in the 16S ribosomal RNA sequence and the mutated 16S ribosomal RNAs are produced by in vitro transcription. It is then possible to investigate how the mutations affect the assembly of the 16S ribosomal RNA into 30S subunits and the activity of the reconstituted 30S subunits in cell-free protein synthesis assays. Although these approaches are recent, they have already provided a large body of interesting information, relating specific RNA sequences to interactions with ribosomal proteins, to ribosome function, and to its response to antibiotics.
人们已经开发出各种方法来研究大肠杆菌核糖体RNA中的突变如何影响核糖体的功能。其中大多数是体内方法,即在携带核糖体RNA基因的特殊质粒中引入突变。然后在合适的宿主中表达突变质粒,在该宿主中它们可以赋予对以核糖体为靶点的抗生素的抗性。可以使用宿主核糖体RNA基因或宿主核糖体被选择性失活的条件,进而研究突变对核糖体组装和功能的影响。另一种主要针对16S核糖体RNA开发的方法可以完全在体外使用。在这种方法中,构建了一个质粒,该质粒在T7启动子的控制下包含16S核糖体RNA基因。可以在16S核糖体RNA序列中引入突变,并通过体外转录产生突变的16S核糖体RNA。然后就有可能在无细胞蛋白质合成试验中研究这些突变如何影响16S核糖体RNA组装成30S亚基以及重组30S亚基的活性。尽管这些方法是最近才出现的,但它们已经提供了大量有趣的信息,将特定的RNA序列与核糖体蛋白的相互作用、核糖体功能及其对抗生素的反应联系起来。