Tallini Yvonne N, Shui Bo, Greene Kai Su, Deng Ke-Yu, Doran Robert, Fisher Patricia J, Zipfel Warren, Kotlikoff Michael I
Biomedical Science Department, College of Veterinary Medicine, Ithaca, New York, USA.
Physiol Genomics. 2006 Nov 27;27(3):391-7. doi: 10.1152/physiolgenomics.00092.2006. Epub 2006 Aug 29.
The peripheral nervous system has complex and intricate ramifications throughout many target organ systems. To date this system has not been effectively labeled by genetic markers, due largely to inadequate transcriptional specification by minimum promoter constructs. Here we describe transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed under the control of endogenous choline acetyltransferase (ChAT) transcriptional regulatory elements, by knock-in of eGFP within a bacterial artificial chromosome (BAC) spanning the ChAT locus and expression of this construct as a transgene. eGFP is expressed in ChAT(BAC)-eGFP mice in central and peripheral cholinergic neurons, including cell bodies and processes of the somatic motor, somatic sensory, and parasympathetic nervous system in gastrointestinal, respiratory, urogenital, cardiovascular, and other peripheral organ systems. Individual epithelial cells and a subset of lymphocytes within the gastrointestinal and airway mucosa are also labeled, indicating genetic evidence of acetylcholine biosynthesis. Central and peripheral neurons were observed as early as 10.5 days postcoitus in the developing mouse embryo. ChAT(BAC)-eGFP mice allow excellent visualization of all cholinergic elements of the peripheral nervous system, including the submucosal enteric plexus, preganglionic autonomic nerves, and skeletal, cardiac, and smooth muscle neuromuscular junctions. These mice should be useful for in vivo studies of cholinergic neurotransmission and neuromuscular coupling. Moreover, this genetic strategy allows the selective expression and conditional inactivation of genes of interest in cholinergic nerves of the central nervous system and peripheral nervous system.
外周神经系统在许多靶器官系统中具有复杂而精细的分支。迄今为止,该系统尚未被遗传标记有效标记,这主要是由于最小启动子构建体的转录特异性不足。在此,我们描述了转基因小鼠,其中增强型绿色荧光蛋白(eGFP)在内源性胆碱乙酰转移酶(ChAT)转录调控元件的控制下表达,方法是将eGFP敲入跨越ChAT基因座的细菌人工染色体(BAC)中,并将该构建体作为转基因表达。在ChAT(BAC)-eGFP小鼠的中枢和外周胆碱能神经元中表达eGFP,包括胃肠道、呼吸系统、泌尿生殖系统、心血管系统和其他外周器官系统中躯体运动、躯体感觉和副交感神经系统的细胞体和突起。胃肠道和气道黏膜内的单个上皮细胞和一部分淋巴细胞也被标记,这表明了乙酰胆碱生物合成的遗传学证据。在发育中的小鼠胚胎中,最早在交配后10.5天就观察到了中枢和外周神经元。ChAT(BAC)-eGFP小鼠能够很好地观察到外周神经系统的所有胆碱能元件,包括黏膜下肠神经丛、节前自主神经以及骨骼肌、心肌和平滑肌神经肌肉接头。这些小鼠对于胆碱能神经传递和神经肌肉耦合的体内研究应该是有用的。此外,这种遗传策略允许在中枢神经系统和外周神经系统的胆碱能神经中选择性表达和条件性失活感兴趣的基因。