Suppr超能文献

膜蛋白中的螺旋堆积基序。

Helix-packing motifs in membrane proteins.

作者信息

Walters R F S, DeGrado W F

机构信息

Department of Biochemistry and Biophysics and Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13658-63. doi: 10.1073/pnas.0605878103. Epub 2006 Sep 5.

Abstract

The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd </=1.5 A), allowing 90% of the library to be assigned to clusters consisting of at least five members. Surprisingly, three quarters of the helical pairs belong to one of five tightly clustered motifs whose structural features can be understood in terms of simple principles of helix-helix packing. Thus, the universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

摘要

螺旋膜蛋白的折叠很大程度上由嵌入膜中的螺旋之间的相互作用决定。为了阐明反复出现的螺旋-螺旋相互作用基序,我们将膜蛋白的晶体结构分解为相互作用的螺旋对文库。这些螺旋对根据它们的三维相似性(均方根偏差≤1.5埃)进行聚类,使得文库中90%的螺旋对被分配到由至少五个成员组成的簇中。令人惊讶的是,四分之三的螺旋对属于五个紧密聚类基序中的一个,其结构特征可以根据螺旋-螺旋堆积的简单原理来理解。因此,常见跨膜螺旋配对基序的范围相对简单。最大的簇占文库成员的29%,由具有左手堆积角的反平行基序组成,并且它经常通过序列中每七个残基出现的小侧链的堆积而稳定。右手平行和反平行结构显示出类似的趋势,即将小残基分隔到螺旋-螺旋界面,但间隔为四个残基。推导了最常见基序的位置特异性序列倾向。这些结构和序列基序对于膜蛋白的设计和结构预测应该非常有用。

相似文献

1
Helix-packing motifs in membrane proteins.
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13658-63. doi: 10.1073/pnas.0605878103. Epub 2006 Sep 5.
2
Comparison of helix interactions in membrane and soluble alpha-bundle proteins.
Biophys J. 2002 May;82(5):2720-36. doi: 10.1016/S0006-3495(02)75613-0.
4
Helix packing moments reveal diversity and conservation in membrane protein structure.
J Mol Biol. 2004 Mar 26;337(3):713-29. doi: 10.1016/j.jmb.2004.02.001.
5
Hydrogen-bonding and packing features of membrane proteins: functional implications.
Biophys J. 2008 Mar 15;94(6):1945-53. doi: 10.1529/biophysj.107.110395. Epub 2007 Oct 5.
6
Helical packing patterns in membrane and soluble proteins.
Biophys J. 2004 Dec;87(6):4075-86. doi: 10.1529/biophysj.104.049288. Epub 2004 Oct 1.
7
8
The GxxxG motif: a framework for transmembrane helix-helix association.
J Mol Biol. 2000 Feb 25;296(3):911-9. doi: 10.1006/jmbi.1999.3489.
9
Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins.
J Mol Biol. 2001 Aug 24;311(4):891-907. doi: 10.1006/jmbi.2001.4908.
10

引用本文的文献

2
Exo-chirality of the α-helix.
Nat Commun. 2024 Aug 14;15(1):6987. doi: 10.1038/s41467-024-51072-8.
3
De novo-designed transmembrane proteins bind and regulate a cytokine receptor.
Nat Chem Biol. 2024 Jun;20(6):751-760. doi: 10.1038/s41589-024-01562-z. Epub 2024 Mar 13.
4
Comparison of insect and human cytochrome b561 proteins: Insights into candidate ferric reductases in insects.
PLoS One. 2023 Dec 1;18(12):e0291564. doi: 10.1371/journal.pone.0291564. eCollection 2023.
5
Helical polymers for biological and medical applications.
Nat Rev Chem. 2020 Jun;4(6):291-310. doi: 10.1038/s41570-020-0180-5. Epub 2020 May 5.
8
Thermodynamic analysis of the GAS transmembrane motif supports energetic model of dimerization.
Biophys J. 2023 Jan 3;122(1):143-155. doi: 10.1016/j.bpj.2022.11.018. Epub 2022 Nov 12.
9
Protein Design: From the Aspect of Water Solubility and Stability.
Chem Rev. 2022 Sep 28;122(18):14085-14179. doi: 10.1021/acs.chemrev.1c00757. Epub 2022 Aug 3.
10
How physical forces drive the process of helical membrane protein folding.
EMBO Rep. 2022 Feb 3;23(3):e53025. doi: 10.15252/embr.202153025. Epub 2022 Feb 8.

本文引用的文献

1
Solving the membrane protein folding problem.
Nature. 2005 Dec 1;438(7068):581-9. doi: 10.1038/nature04395.
2
Transmembrane glycine zippers: physiological and pathological roles in membrane proteins.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14278-83. doi: 10.1073/pnas.0501234102. Epub 2005 Sep 22.
3
Alpha-alpha linking motifs and interhelical orientations.
Proteins. 2005 Nov 1;61(2):325-37. doi: 10.1002/prot.20522.
4
A method for structural analysis of alpha-helices of membrane proteins.
J Mol Model. 2004 Dec;10(5-6):393-8. doi: 10.1007/s00894-004-0212-y. Epub 2004 Nov 4.
5
Interactive electron-density map interpretation: from INTER to O.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2115-25. doi: 10.1107/S0907444904023509. Epub 2004 Nov 26.
6
Helical packing patterns in membrane and soluble proteins.
Biophys J. 2004 Dec;87(6):4075-86. doi: 10.1529/biophysj.104.049288. Epub 2004 Oct 1.
7
Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs.
Curr Opin Struct Biol. 2004 Aug;14(4):465-79. doi: 10.1016/j.sbi.2004.07.007.
8
The machinery of membrane protein assembly.
Curr Opin Struct Biol. 2004 Aug;14(4):397-404. doi: 10.1016/j.sbi.2004.07.003.
9
Amino acid propensities are position-dependent throughout the length of alpha-helices.
J Mol Biol. 2004 Apr 9;337(5):1195-205. doi: 10.1016/j.jmb.2004.02.004.
10
Membrane protein folding: beyond the two stage model.
FEBS Lett. 2003 Nov 27;555(1):122-5. doi: 10.1016/s0014-5793(03)01106-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验