Heinrich Annette, Woyda Kathrin, Brauburger Katja, Meiss Gregor, Detsch Christian, Stülke Jörg, Forchhammer Karl
Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
J Biol Chem. 2006 Nov 17;281(46):34909-17. doi: 10.1074/jbc.M607582200. Epub 2006 Sep 25.
PII proteins are widespread and highly conserved signal transduction proteins occurring in bacteria, Archaea, and plants and play pivotal roles in controlling nitrogen assimilatory metabolism. This study reports on biochemical properties of the PII-homologue GlnK (originally termed NrgB) in Bacillus subtilis (BsGlnK). Like other PII proteins, the native BsGlnK protein has a trimeric structure and readily binds ATP in the absence of divalent cations, whereas 2-oxoglutarate is only weakly bound. In contrast to other PII-like proteins, Mg2+ severely affects its ATP-binding properties. BsGlnK forms a tight complex with the membrane-bound ammonium transporter AmtB (NrgA), from which it can be relieved by millimolar concentrations of ATP. Immunoprecipitation and co-localization experiments identified a novel interaction between the BsGlnK-AmtB complex and the major transcription factor of nitrogen metabolism, TnrA. In vitro in the absence of ATP, TnrA is completely tethered to membrane (AmtB)-bound GlnK, whereas in extracts from BsGlnK- or AmtB-deficient cells, TnrA is entirely soluble. The presence of 4 mm ATP leads to concomitant solubilization of BsGlnK and TnrA. This ATP-dependent membrane re-localization of TnrA by BsGlnK/AmtB may present a novel mechanism to control the global nitrogen-responsive transcription regulator TnrA in B. subtilis under certain physiological conditions.
PII蛋白广泛存在且高度保守,存在于细菌、古菌和植物中,是信号转导蛋白,在控制氮同化代谢中起关键作用。本研究报道了枯草芽孢杆菌中PII同源物GlnK(最初称为NrgB,即BsGlnK)的生化特性。与其他PII蛋白一样,天然BsGlnK蛋白具有三聚体结构,在没有二价阳离子的情况下能轻易结合ATP,而2-氧代戊二酸的结合较弱。与其他类PII蛋白不同的是,Mg2+严重影响其ATP结合特性。BsGlnK与膜结合的铵转运蛋白AmtB(NrgA)形成紧密复合物,毫摩尔浓度的ATP可使其解离。免疫沉淀和共定位实验确定了BsGlnK-AmtB复合物与氮代谢主要转录因子TnrA之间的新相互作用。在无ATP的体外实验中,TnrA完全与膜(AmtB)结合的GlnK相连,而在BsGlnK或AmtB缺陷细胞的提取物中,TnrA完全可溶。4 mM ATP的存在导致BsGlnK和TnrA同时溶解。BsGlnK/AmtB对TnrA的这种ATP依赖性膜重新定位可能是在某些生理条件下控制枯草芽孢杆菌中全局氮响应转录调节因子TnrA的一种新机制。