Totir Monica A, Padayatti Pius S, Helfand Marion S, Carey Marianne P, Bonomo Robert A, Carey Paul R, van den Akker Focco
Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
Biochemistry. 2006 Oct 3;45(39):11895-904. doi: 10.1021/bi060990m.
The objective of this study was to determine the molecular factors that lead to beta-lactamase inhibitor resistance for the M69V variant in SHV-1 beta-lactamase. With mechanism-based inhibitors, the beta-lactamase forms an acyl-enzyme intermediate that consists of a trans-enamine derivative in the active site. This study focuses on these intermediates by introducing the E166A mutation that greatly retards deacylation. Thus, by comparing the properties of the E166A and M69V/E166A forms, we can explore the consequences of the resistance mutation at the level of the enamine acyl-enzyme forms. The reactions between the beta-lactamase and the inhibitors tazobactam, sulbactam, and clavulanic acid are followed in single crystals of the enzymes by using a Raman microscope. The resulting Raman difference spectroscopic data provide detailed information about conformational events involving the enamine species as well as an estimate of their populations. The Raman difference spectra for each of the inhibitors in the E166A and M69V/E166A variants are very similar. In particular, detailed analysis of the main enamine Raman vibration near 1595 cm(-1) reveals that the structure and flexibility of the enamine fragments are essentially identical for each of the three inhibitors in E166A and in the M69V/E166A double mutant. This finding is in accord with the X-ray-derived structures, presented herein at 1.6-1.75 A resolution, of the trans-enamine intermediates formed by the three inhibitors in M69V/E166A. However, a comparison of Raman results for M69V/E166A and E166A shows that the M69V mutation results in a 40%, 25%, and negligible reductions in the enamine population when the beta-lactamase crystals are soaked in 5 mM tazobactam, clavulanic acid, and sulbactam solutions, respectively. The levels of enamine from tazobactam and clavulanic acid can be increased by increasing the concentrations of inhibitor in the mother liquor. Thus, the sensitivity of population levels to the inhibitor concentration in the mother liquor focuses attention on the properties of the encounter complex preceding acylation. It is proposed that for small ligands, such as tazobactam, sulbactam, and clavulanic acid, the positioning of the lactam ring in the active site in the correct orientation for acylation is only one of a number of poorly defined conformations. For tazobactam and clavulanic acid, the correctly oriented encounter complex is even less likely in the M69V variant, leading to a reduction in the level of inhibition of the enzyme via formation of the acyl-enzyme intermediate and the onset of resistance. Analysis of the X-ray structures of the three intermediates in M69V/E166A demonstrates that, compared to the structures for the E166A form, the oxyanion hole becomes smaller, providing one explanation for why acylation may be less efficient following the M69V substitution.
本研究的目的是确定导致SHV-1β-内酰胺酶中M69V变体产生β-内酰胺酶抑制剂抗性的分子因素。使用基于机制的抑制剂时,β-内酰胺酶会形成一种酰基酶中间体,该中间体在活性位点由反式烯胺衍生物组成。本研究通过引入极大延缓脱酰作用的E166A突变来聚焦这些中间体。因此,通过比较E166A和M69V/E166A形式的特性,我们可以在烯胺酰基酶形式的层面探索抗性突变的后果。通过使用拉曼显微镜在酶的单晶中跟踪β-内酰胺酶与抑制剂他唑巴坦、舒巴坦和克拉维酸之间的反应。所得的拉曼差光谱数据提供了有关涉及烯胺物种的构象事件的详细信息以及它们的丰度估计。E166A和M69V/E166A变体中每种抑制剂的拉曼差光谱非常相似。特别是,对1595 cm(-1)附近主要烯胺拉曼振动的详细分析表明,E166A和M69V/E166A双突变体中三种抑制剂各自的烯胺片段的结构和灵活性基本相同。这一发现与本文以1.6 - 1.75 Å分辨率呈现的M69V/E166A中由三种抑制剂形成的反式烯胺中间体的X射线衍生结构一致。然而,M69V/E166A和E166A的拉曼结果比较表明,当β-内酰胺酶晶体分别浸泡在5 mM他唑巴坦、克拉维酸和舒巴坦溶液中时,M69V突变导致烯胺丰度分别降低40%、25%和可忽略不计。通过增加母液中抑制剂的浓度,可以提高他唑巴坦和克拉维酸产生的烯胺水平。因此,丰度水平对母液中抑制剂浓度的敏感性将注意力集中在酰化之前的遭遇复合物的特性上。有人提出,对于诸如他唑巴坦、舒巴坦和克拉维酸等小配体,内酰胺环在活性位点以正确的酰化方向定位只是许多定义不明确的构象之一。对于他唑巴坦和克拉维酸,在M69V变体中正确取向的遭遇复合物甚至更不可能形成,导致通过形成酰基酶中间体对酶的抑制水平降低和抗性的产生。对M69V/E166A中三种中间体的X射线结构分析表明,与E166A形式的结构相比,氧阴离子空穴变小,这为M69V取代后酰化效率可能较低提供了一种解释。