Suppr超能文献

在存在用于液滴分析的不混溶边界的情况下进行毛细管电泳分离。

Capillary electrophoresis separation in the presence of an immiscible boundary for droplet analysis.

作者信息

Edgar J Scott, Pabbati Chaitanya P, Lorenz Robert M, He Mingyan, Fiorini Gina S, Chiu Daniel T

机构信息

Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA.

出版信息

Anal Chem. 2006 Oct 1;78(19):6948-54. doi: 10.1021/ac0613131.

Abstract

This paper demonstrates the ability to use capillary electrophoresis (CE) separation coupled with laser-induced fluorescence for analyzing the contents of single femtoliter-volume aqueous droplets. A single droplet was formed using a T-channel (3 microm wide by 3 microm tall) connected to microinjectors, and then the droplet was fluidically moved to an immiscible boundary that isolates the CE channel (50 microm wide by 50 microm tall) from the droplet generation region. Fusion of the aqueous droplet with the immiscible boundary effectively injects the droplet content into the separation channel. In addition to injecting the contents of droplets, we found aqueous samples can be introduced directly into the separation channel by reversibly penetrating and resealing the immiscible partition. Because droplet generation in channels requires hydrophobic surfaces, we have also investigated the advantages to using all hydrophobic channels versus channel systems with patterned hydrophobic and hydrophilic regions. To fabricate devices with patterned surface chemistry, we have developed a simple strategy based on differential wetting to deposit selectively a hydrophilic polymer (poly(styrenesulfonate)) onto desired regions of the microfluidic chip. Finally, we applied our device to the separation of a simple mixture of fluorescein-labeled amino acids contained within a approximately 10-fL droplet.

摘要

本文展示了利用毛细管电泳(CE)分离与激光诱导荧光相结合来分析单个飞升体积水滴内容物的能力。使用连接到微注射器的T形通道(宽3微米、高3微米)形成单个水滴,然后将该水滴通过流体方式移动到一个不混溶边界处,该边界将CE通道(宽50微米、高50微米)与水滴生成区域隔离开来。水滴与不混溶边界的融合有效地将水滴内容物注入分离通道。除了注入水滴内容物外,我们还发现水性样品可以通过可逆地穿透和重新密封不混溶隔板直接引入分离通道。由于通道中的水滴生成需要疏水表面,我们还研究了使用全疏水通道与具有图案化疏水和亲水区域的通道系统相比的优势。为了制造具有图案化表面化学的器件,我们开发了一种基于差异润湿性的简单策略,以将亲水性聚合物(聚苯乙烯磺酸盐)选择性地沉积到微流控芯片的所需区域上。最后,我们将我们的器件应用于分离包含在约10飞升水滴中的荧光素标记氨基酸的简单混合物。

相似文献

4
Automated sampling system for the analysis of amino acids using microfluidic capillary electrophoresis.
Talanta. 2009 Apr 30;78(2):448-52. doi: 10.1016/j.talanta.2008.11.034. Epub 2008 Dec 3.
5
Development of a simplified microfluidic injector for analysis of droplet content via capillary electrophoresis.
Anal Chem. 2014 Oct 21;86(20):10193-200. doi: 10.1021/ac502272q. Epub 2014 Oct 1.
6
Droplet Incubation and Splitting in Open Microfluidic Channels.
Anal Methods. 2019 Sep 21;11(35):4528-4536. doi: 10.1039/c9ay00758j. Epub 2019 Aug 28.
7
Chemistry and biology in femtoliter and picoliter volume droplets.
Acc Chem Res. 2009 May 19;42(5):649-58. doi: 10.1021/ar8002464.
9
Droplet microfluidics for postcolumn reactions in capillary electrophoresis.
Anal Chem. 2014 Dec 2;86(23):11811-8. doi: 10.1021/ac5033963. Epub 2014 Nov 11.
10
Sample enrichment in a single levitated droplet for capillary electrophoresis.
J Chromatogr B Biomed Sci Appl. 1998 Aug 28;714(1):39-46. doi: 10.1016/s0378-4347(98)00092-9.

引用本文的文献

1
In-Droplet Electrophoretic Separation and Enrichment of Biomolecules.
Anal Chem. 2020 Jun 16;92(12):8414-8421. doi: 10.1021/acs.analchem.0c01044. Epub 2020 Jun 8.
2
Optofluidic integration for microanalysis.
Microfluid Nanofluidics. 2008;4(1):53-79. doi: 10.1007/s10404-007-0223-y. Epub 2007 Sep 11.
3
Droplet sample introduction to microchip gel and zone electrophoresis for rapid analysis of protein-protein complexes and enzymatic reactions.
Anal Bioanal Chem. 2019 Sep;411(23):6155-6163. doi: 10.1007/s00216-019-02006-7. Epub 2019 Jul 13.
4
DMF-MALDI: droplet based microfluidic combined to MALDI-TOF for focused peptide detection.
Sci Rep. 2017 Jul 28;7(1):6756. doi: 10.1038/s41598-017-06660-8.
5
Recent advances in protein analysis by capillary and microchip electrophoresis.
Analyst. 2017 May 30;142(11):1847-1866. doi: 10.1039/c7an00198c.
6
Advances in capillary electrophoresis and the implications for drug discovery.
Expert Opin Drug Discov. 2017 Feb;12(2):213-224. doi: 10.1080/17460441.2017.1268121. Epub 2016 Dec 9.
8
A microfluidic chip for ICPMS sample introduction.
J Vis Exp. 2015 Mar 5(97):52525. doi: 10.3791/52525.
9
A new microfluidics-based droplet dispenser for ICPMS.
Anal Chem. 2014 Jun 17;86(12):6012-8. doi: 10.1021/ac501149a. Epub 2014 May 31.
10
Self-digitization of samples into a high-density microfluidic bottom-well array.
Anal Chem. 2013 Nov 5;85(21):10417-23. doi: 10.1021/ac402383n. Epub 2013 Oct 7.

本文引用的文献

2
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
6
Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
Lab Chip. 2006 Mar;6(3):437-46. doi: 10.1039/b510841a. Epub 2006 Jan 25.
8
Microchip capillary electrophoresis with solid-state electrochemiluminescence detector.
Anal Chem. 2005 Dec 15;77(24):7993-7. doi: 10.1021/ac051369f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验