Suppr超能文献

来自产甲烷古菌马氏甲烷八叠球菌的吡咯赖氨酸-tRNA合成酶催化结构域的结晶及初步X射线晶体学分析。

Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of pyrrolysyl-tRNA synthetase from the methanogenic archaeon Methanosarcina mazei.

作者信息

Yanagisawa Tatsuo, Ishii Ryohei, Fukunaga Ryuya, Nureki Osamu, Yokoyama Shigeyuki

机构信息

RIKEN Genomic Sciences Center, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.

出版信息

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Oct 1;62(Pt 10):1031-3. doi: 10.1107/S1744309106036700. Epub 2006 Sep 30.

Abstract

Pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei was overexpressed in an N-terminally truncated form PylRS(c270) in Escherichia coli, purified to homogeneity and crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. The native PylRS(c270) crystals in complex with an ATP analogue belonged to space group P6(4), with unit-cell parameters a = b = 104.88, c = 70.43 A, alpha = beta = 90, gamma = 120 degrees , and diffracted to 1.9 A resolution. The asymmetric unit contains one molecule of PylRS(c270). Selenomethionine-substituted protein crystals were prepared in order to solve the structure by the MAD phasing method.

摘要

来自马氏甲烷八叠球菌的吡咯赖氨酰 - tRNA合成酶(PylRS)以N端截短形式PylRS(c270)在大肠杆菌中过表达,纯化至同质,并使用聚乙二醇作为沉淀剂通过悬滴气相扩散法结晶。与ATP类似物复合的天然PylRS(c270)晶体属于空间群P6(4),晶胞参数a = b = 104.88,c = 70.43 Å,α = β = 90,γ = 120°,衍射分辨率达到1.9 Å。不对称单元包含一个PylRS(c270)分子。制备了硒代甲硫氨酸取代的蛋白质晶体,以便通过MAD相位法解析结构。

相似文献

1
Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of pyrrolysyl-tRNA synthetase from the methanogenic archaeon Methanosarcina mazei.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Oct 1;62(Pt 10):1031-3. doi: 10.1107/S1744309106036700. Epub 2006 Sep 30.
2
Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11268-73. doi: 10.1073/pnas.0704769104. Epub 2007 Jun 25.
3
Crystallization and preliminary X-ray crystallographic study of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii.
Acta Crystallogr D Biol Crystallogr. 2004 Oct;60(Pt 10):1916-8. doi: 10.1107/S0907444904020700. Epub 2004 Sep 23.
6
Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
J Mol Biol. 2009 Feb 6;385(5):1352-60. doi: 10.1016/j.jmb.2008.11.059. Epub 2008 Dec 11.
7
Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase.
J Mol Biol. 2008 May 2;378(3):634-52. doi: 10.1016/j.jmb.2008.02.045. Epub 2008 Feb 29.
8
Crystallization and preliminary diffraction analysis of Escherichia coli cysteinyl-tRNA synthetase.
Acta Crystallogr D Biol Crystallogr. 1999 May;55(Pt 5):1046-7. doi: 10.1107/s0907444999001468.
9
Structural basis for the site-specific incorporation of lysine derivatives into proteins.
PLoS One. 2014 Apr 23;9(4):e96198. doi: 10.1371/journal.pone.0096198. eCollection 2014.
10
Expression, purification, crystallization and preliminary X-ray analysis of phosphotransacetylase from Methanosarcina thermophila.
Acta Crystallogr D Biol Crystallogr. 2003 Aug;59(Pt 8):1517-20. doi: 10.1107/s0907444903013428. Epub 2003 Jul 23.

引用本文的文献

1
Genetic Code Expansion: Recent Developments and Emerging Applications.
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
2
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
3
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
4
Rational design of the genetic code expansion toolkit for encoding of D-amino acids.
Front Genet. 2023 Oct 13;14:1277489. doi: 10.3389/fgene.2023.1277489. eCollection 2023.
6
Generating Efficient Pyrrolysyl-tRNA Synthetases for Structurally Diverse Non-Canonical Amino Acids.
ACS Chem Biol. 2022 Dec 16;17(12):3458-3469. doi: 10.1021/acschembio.2c00639. Epub 2022 Nov 16.
7
Ancestral archaea expanded the genetic code with pyrrolysine.
J Biol Chem. 2022 Nov;298(11):102521. doi: 10.1016/j.jbc.2022.102521. Epub 2022 Sep 22.
8
Exploration of Pyrrolysyl-tRNA Synthetase Activity in Yeast.
ACS Synth Biol. 2022 May 20;11(5):1824-1834. doi: 10.1021/acssynbio.2c00001. Epub 2022 Apr 13.
9
The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme.
J Mol Biol. 2022 Apr 30;434(8):167453. doi: 10.1016/j.jmb.2022.167453. Epub 2022 Jan 13.
10
Ferritin Conjugates With Multiple Clickable Amino Acids Encoded by C-Terminal Engineered Pyrrolysyl-tRNA Synthetase.
Front Chem. 2021 Nov 25;9:779976. doi: 10.3389/fchem.2021.779976. eCollection 2021.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The direct genetic encoding of pyrrolysine.
Curr Opin Microbiol. 2005 Dec;8(6):706-12. doi: 10.1016/j.mib.2005.10.009. Epub 2005 Oct 26.
3
Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo.
Nature. 2004 Sep 16;431(7006):333-5. doi: 10.1038/nature02895. Epub 2004 Aug 25.
4
An aminoacyl-tRNA synthetase that specifically activates pyrrolysine.
Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12450-4. doi: 10.1073/pnas.0405362101. Epub 2004 Aug 16.
5
A new UAG-encoded residue in the structure of a methanogen methyltransferase.
Science. 2002 May 24;296(5572):1462-6. doi: 10.1126/science.1069556.
6
Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA.
Science. 2002 May 24;296(5572):1459-62. doi: 10.1126/science.1069588.
7
Aminoacyl-tRNA synthesis.
Annu Rev Biochem. 2000;69:617-50. doi: 10.1146/annurev.biochem.69.1.617.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验