Boozer A D, Boca A, Miller R, Northup T E, Kimble H J
Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA.
Phys Rev Lett. 2006 Aug 25;97(8):083602. doi: 10.1103/PhysRevLett.97.083602. Epub 2006 Aug 23.
Localization to the ground state of axial motion is demonstrated for a single, trapped atom strongly coupled to the field of a high finesse optical resonator. The axial atomic motion is cooled by way of coherent Raman transitions on the red vibrational sideband. An efficient state detection scheme enabled by strong coupling in cavity QED is used to record the Raman spectrum, from which the state of atomic motion is inferred. We find that the lowest vibrational level of the axial potential with zero-point energy variant Planck's over 2 h omega a/2kB = 13 microK is occupied with probability P0 approximately 0.95.
对于一个与高精细度光学谐振腔场强耦合的单个捕获原子,展示了其轴向运动到基态的局域化。轴向原子运动通过在红色振动边带上的相干拉曼跃迁来冷却。利用腔量子电动力学中的强耦合实现的一种高效态检测方案来记录拉曼光谱,从中推断出原子运动的状态。我们发现,轴向势的最低振动能级,其零点能量为(\frac{\hbar\omega_a}{2k_B}=13,\mu K),被占据的概率(P_0)约为(0.95)。