Balogh Edina, Mato-Iglesias Marta, Platas-Iglesias Carlos, Tóth Eva, Djanashvili Kristina, Peters Joop A, de Blas Andrés, Rodríguez-Blas Teresa
Laboratoire de Chimie Inorganique et Bioinorganique, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland.
Inorg Chem. 2006 Oct 16;45(21):8719-28. doi: 10.1021/ic0604157.
Two novel ligands containing pyridine units and phosphonate pendant arms, with ethane-1,2-diamine (L2) or cyclohexane-1,2-diamine (L3) backbones, have been synthesized for Ln complexation. The hydration numbers obtained from luminescence lifetime measurements in aqueous solutions of the Eu(III) and Tb(III) complexes are q = 0.6 (EuL2), 0.7 (TbL2), 0.8 (EuL3), and 0.4 (TbL3). To further assess the hydration equilibrium, we have performed a variable-temperature and -pressure UV-vis spectrophotometric study on the Eu(III) complexes. The reaction enthalpy, entropy, and volume for the hydration equilibrium EuL <--> EuL(H2O) were calculated to be DeltaH degrees = -(11.6 +/- 2) kJ mol(-1), DeltaS degrees = -(34.2 +/- 5) J mol(-1) K(-1), and = 1.8 +/- 0.3 for EuL2 and DeltaH degrees = -(13.5 +/- 1) kJ mol(-1), DeltaS degrees = -(41 +/- 4) J mol(-1) K(-1), and = 1.7 +/- 0.3 for EuL3, respectively. We have carried out variable-temperature 17O NMR and nuclear magnetic relaxation dispersion (NMRD) measurements on the GdL2(H2O)q and GdL3(H2O)q systems. Given the presence of phosphonate groups in the ligand backbone, a second-sphere relaxation mechanism has been included for the analysis of the longitudinal (17)O and (1)H NMR relaxation rates. The water exchange rate on GdL2(H2O)q, = (7.0 +/- 0.8) x 10(8) s(-1), is extremely high and comparable to that on the Gd(III) aqua ion, while it is slightly reduced for GdL3(H2O)q, = (1.5 +/- 0.1) x 10(8) s(-1). This fast exchange can be rationalized in terms of a very flexible inner coordination sphere, which is slightly rigidified for L3 by the introduction of the cyclohexyl group on the amine backbone. The water exchange proceeds via a dissociative interchange mechanism, evidenced by the positive activation volumes obtained from variable-pressure 17O NMR for both GdL2(H2O)q and GdL3(H2O)q (DeltaV = +8.3 +/- 1.0 and 8.7 +/- 1.0 cm(3) mol(-1), respectively).
已合成了两种含吡啶单元和膦酸酯侧链、以乙二胺(L2)或环己二胺(L3)为主链的新型配体,用于镧系元素络合。通过对铕(III)和铽(III)配合物水溶液进行发光寿命测量得到的水合数分别为:q = 0.6(EuL2)、0.7(TbL2)、0.8(EuL3)和0.4(TbL3)。为进一步评估水合平衡,我们对铕(III)配合物进行了变温和变压紫外可见分光光度研究。计算出EuL <--> EuL(H2O)水合平衡的反应焓、熵和体积,对于EuL2,分别为ΔH° = -(11.6 ± 2) kJ mol⁻¹、ΔS° = -(34.2 ± 5) J mol⁻¹ K⁻¹和 = 1.8 ± 0.3;对于EuL3,分别为ΔH° = -(13.5 ± 1) kJ mol⁻¹、ΔS° = -(41 ± 4) J mol⁻¹ K⁻¹和 = 1.7 ± 0.3。我们对GdL2(H2O)q和GdL3(H2O)q体系进行了变温¹⁷O NMR和核磁共振弛豫色散(NMRD)测量。鉴于配体主链中存在膦酸酯基团,在分析纵向¹⁷O和¹H NMR弛豫速率时纳入了二级球弛豫机制。GdL2(H2O)q上的水交换速率 = (7.0 ± 0.8) x 10⁸ s⁻¹极高,与Gd(III)水合离子上的相当,而GdL3(H2O)q的水交换速率略有降低 = (1.5 ± 0.1) x 10⁸ s⁻¹。这种快速交换可以通过非常灵活的内配位球来解释,通过在胺主链上引入环己基,L3的内配位球略有刚性化。水交换通过解离交换机制进行,这由变压¹⁷O NMR对GdL2(H2O)q和GdL3(H2O)q得到的正活化体积所证明(分别为ΔV = +8.3 ± 1.0和8.7 ± 1.0 cm³ mol⁻¹)。