Suppr超能文献

CFTR的体内磷酸化促进核苷酸结合域异二聚体的形成。

In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer.

作者信息

Mense Martin, Vergani Paola, White Dennis M, Altberg Gal, Nairn Angus C, Gadsby David C

机构信息

Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, NY 10021, USA.

出版信息

EMBO J. 2006 Oct 18;25(20):4728-39. doi: 10.1038/sj.emboj.7601373. Epub 2006 Oct 12.

Abstract

The human ATP-binding cassette (ABC) protein CFTR (cystic fibrosis transmembrane conductance regulator) is a chloride channel, whose dysfunction causes cystic fibrosis. To gain structural insight into the dynamic interaction between CFTR's nucleotide-binding domains (NBDs) proposed to underlie channel gating, we introduced target cysteines into the NBDs, expressed the channels in Xenopus oocytes, and used in vivo sulfhydryl-specific crosslinking to directly examine the cysteines' proximity. We tested five cysteine pairs, each comprising one introduced cysteine in the NH(2)-terminal NBD1 and another in the COOH-terminal NBD2. Identification of crosslinked product was facilitated by co-expression of NH(2)-terminal and COOH-terminal CFTR half channels each containing one NBD. The COOH-terminal half channel lacked all native cysteines. None of CFTR's 18 native cysteines was found essential for wild type-like, phosphorylation- and ATP-dependent, channel gating. The observed crosslinks demonstrate that NBD1 and NBD2 interact in a head-to-tail configuration analogous to that in homodimeric crystal structures of nucleotide-bound prokaryotic NBDs. CFTR phosphorylation by PKA strongly promoted both crosslinking and opening of the split channels, firmly linking head-to-tail NBD1-NBD2 association to channel opening.

摘要

人类ATP结合盒(ABC)蛋白CFTR(囊性纤维化跨膜传导调节因子)是一种氯离子通道,其功能障碍会导致囊性纤维化。为了深入了解CFTR核苷酸结合结构域(NBDs)之间动态相互作用的结构基础(该相互作用被认为是通道门控的基础),我们将目标半胱氨酸引入NBDs,在非洲爪蟾卵母细胞中表达通道,并使用体内巯基特异性交联直接检测半胱氨酸的接近程度。我们测试了五对半胱氨酸,每一对都包括一个引入到NH(2)末端NBD1中的半胱氨酸和另一个引入到COOH末端NBD2中的半胱氨酸。通过共表达各自包含一个NBD的NH(2)末端和COOH末端CFTR半通道,便于鉴定交联产物。COOH末端半通道缺乏所有天然半胱氨酸。未发现CFTR的18个天然半胱氨酸中有任何一个对于野生型样、磷酸化和ATP依赖性的通道门控是必需的。观察到的交联表明,NBD1和NBD2以头对尾的构型相互作用,类似于核苷酸结合的原核NBDs的同二聚体晶体结构中的构型。PKA介导的CFTR磷酸化强烈促进了分裂通道的交联和开放,将头对尾的NBD1-NBD2结合与通道开放紧密联系起来。

相似文献

1
In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer.
EMBO J. 2006 Oct 18;25(20):4728-39. doi: 10.1038/sj.emboj.7601373. Epub 2006 Oct 12.
4
Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
J Gen Physiol. 2005 Jan;125(1):43-55. doi: 10.1085/jgp.200409174. Epub 2004 Dec 13.
7
On the mechanism of MgATP-dependent gating of CFTR Cl- channels.
J Gen Physiol. 2003 Jan;121(1):17-36. doi: 10.1085/jgp.20028673.
9
Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
J Gen Physiol. 2006 Nov;128(5):523-33. doi: 10.1085/jgp.200609558. Epub 2006 Oct 16.

引用本文的文献

2
Exploring the Mechanism of Activation of CFTR by Curcuminoids: An Ensemble Docking Study.
Int J Mol Sci. 2023 Dec 31;25(1):552. doi: 10.3390/ijms25010552.
3
Computational analysis of long-range allosteric communications in CFTR.
Elife. 2023 Dec 18;12:RP88659. doi: 10.7554/eLife.88659.
4
Real-time observation of functional specialization among phosphorylation sites in CFTR.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213216. Epub 2023 Jan 25.
5
The molecular evolution of function in the CFTR chloride channel.
J Gen Physiol. 2021 Dec 6;153(12). doi: 10.1085/jgp.202012625. Epub 2021 Oct 14.
6
A topological switch in CFTR modulates channel activity and sensitivity to unfolding.
Nat Chem Biol. 2021 Sep;17(9):989-997. doi: 10.1038/s41589-021-00844-0. Epub 2021 Aug 2.
8
G551D mutation impairs PKA-dependent activation of CFTR channel that can be restored by novel GOF mutations.
Am J Physiol Lung Cell Mol Physiol. 2020 Nov 1;319(5):L770-L785. doi: 10.1152/ajplung.00262.2019. Epub 2020 Sep 2.

本文引用的文献

2
Structure of the ABC transporter MsbA in complex with ADP.vanadate and lipopolysaccharide.
Science. 2005 May 13;308(5724):1028-31. doi: 10.1126/science.1107733.
3
H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB.
EMBO J. 2005 Jun 1;24(11):1901-10. doi: 10.1038/sj.emboj.7600657. Epub 2005 May 12.
4
CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
Nature. 2005 Feb 24;433(7028):876-80. doi: 10.1038/nature03313.
5
Reversible silencing of CFTR chloride channels by glutathionylation.
J Gen Physiol. 2005 Feb;125(2):127-41. doi: 10.1085/jgp.200409115. Epub 2005 Jan 18.
6
Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA.
J Gen Physiol. 2005 Feb;125(2):171-86. doi: 10.1085/jgp.200409076. Epub 2005 Jan 18.
7
Side chain and backbone contributions of Phe508 to CFTR folding.
Nat Struct Mol Biol. 2005 Jan;12(1):10-6. doi: 10.1038/nsmb881. Epub 2004 Dec 26.
9
The ATP switch model for ABC transporters.
Nat Struct Mol Biol. 2004 Oct;11(10):918-26. doi: 10.1038/nsmb836.
10
Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR).
J Biol Chem. 2004 Sep 10;279(37):39051-7. doi: 10.1074/jbc.M407434200. Epub 2004 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验