Suppr超能文献

用于cDNA微阵列图像分析的相关统计

Correlation statistics for cDNA microarray image analysis.

作者信息

Nagarajan Radhakrishnan, Upreti Meenakshi

机构信息

Center on Aging, University of Arkansas for Medical Sciences, 629 Jack Stephens Drive, Room: 3105, Little Rock, AR 72205, USA.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2006 Jul-Sep;3(3):232-8. doi: 10.1109/TCBB.2006.30.

Abstract

In this paper, correlation of the pixels comprising a microarray spot is investigated. Subsequently, correlation statistics, namely, Pearson correlation and Spearman rank correlation, are used to segment the foreground and background intensity of microarray spots. The performance of correlation-based segmentation is compared to clustering-based (PAM, k-means) and seeded-region growing techniques (SPOT). It is shown that correlation-based segmentation is useful in flagging poorly hybridized spots, thus minimizing false-positives. The present study also raises the intriguing question of whether a change in correlation can be an indicator of differential gene expression.

摘要

本文研究了构成微阵列斑点的像素之间的相关性。随后,使用相关统计量,即皮尔逊相关系数和斯皮尔曼等级相关系数,来分割微阵列斑点的前景和背景强度。将基于相关性的分割性能与基于聚类的方法(PAM、k均值)和种子区域生长技术(SPOT)进行了比较。结果表明,基于相关性的分割在标记杂交不良的斑点方面很有用,从而最大限度地减少假阳性。本研究还提出了一个有趣的问题,即相关性的变化是否可以作为基因差异表达的指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验