Guirado-López R A, Rincón M E
Instituto de Física Manuel Sandoval Vallarta, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, Mexico.
J Chem Phys. 2006 Oct 21;125(15):154312. doi: 10.1063/1.2353824.
The excitation spectra and the structural properties of highly hydroxylated C(60)(OH)(x) fullerenes (so-called fullerenols) are analyzed by comparing optical absorption experiments on dilute fullerenol-water solutions with semiempirical and density functional theory electronic structure calculations. The optical spectrum of fullerenol molecules with 24-28 OH attached to the carbon surface is characterized by the existence of broad bands with reduced intensities near the ultraviolet region (below approximately 500 nm) together with a complete absence of optical transitions in the visible part of the spectra, contrasting with the intense absorption observed in C(60) solutions. Our theoretical calculations of the absorption spectra, performed within the framework of the semiempirical Zerner intermediate neglect of diatomic differential overlap method [Reviews in Computational Chemistry II, edited by K. B. Lipkowitz and D. B. Boyd (VCH, Weinheim, 1991), Chap. 8, pp. 313-316] for various gas-phase-like C(60)(OH)(26) isomers, reveal that the excitation spectra of fullerenol molecules strongly depend on the degree of surface functionalization, the precise distribution of the OH groups on the carbon structure, and the presence of impurities in the samples. Interestingly, we have surprisingly found that low energy atomic configurations are obtained when the OH groups segregate on the C(60) surface forming molecular domains of different sizes. This patchy behavior for the hydroxyl molecules on the carbon surface leads in general to the formation of fullerene compounds with closed electronic shells, large highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps, and existence of an excitation spectrum that accounts for the main qualitative features observed in the experimental data.
通过将稀富勒醇 - 水溶液的光吸收实验与半经验和密度泛函理论电子结构计算进行比较,分析了高度羟基化的C(60)(OH)(x)富勒烯(所谓的富勒醇)的激发光谱和结构性质。碳表面附着24 - 28个OH的富勒醇分子的光谱特征是,在紫外区域(约500 nm以下)附近存在强度减弱的宽带,并且光谱的可见光部分完全没有光学跃迁,这与C(60)溶液中观察到的强烈吸收形成对比。我们在半经验的Zerner双原子微分重叠近似忽略方法框架内[《计算化学评论II》,由K. B. Lipkowitz和D. B. Boyd编辑(VCH,魏因海姆,1991年),第8章,第313 - 316页]对各种类似气相的C(60)(OH)(26)异构体进行的吸收光谱理论计算表明,富勒醇分子的激发光谱强烈依赖于表面官能化程度、OH基团在碳结构上的精确分布以及样品中杂质的存在。有趣的是,我们惊人地发现,当OH基团在C(60)表面分离形成不同大小的分子域时,会得到低能量原子构型。碳表面羟基分子的这种斑片状行为通常导致形成具有封闭电子壳层、大的最高占据分子轨道 - 最低未占据分子轨道能隙以及存在能解释实验数据中主要定性特征的激发光谱的富勒烯化合物。