Qian Hong
Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.
Annu Rev Phys Chem. 2007;58:113-42. doi: 10.1146/annurev.physchem.58.032806.104550.
Biochemical systems and processes in living cells generally operate far from equilibrium. This review presents an overview of a statistical thermodynamic treatment for such systems, with examples from several key components in cellular signal transduction. Open-system nonequilibrium steady-state (NESS) models are introduced. The models account quantitatively for the energetics and thermodynamics in phosphorylation-dephosphorylation switches, GTPase timers, and specificity amplification through kinetic proofreading. The chemical energy derived from ATP and GTP hydrolysis establishes the NESS of a cell and makes the cell--a mesoscopic-biochemical reaction system that consists of a collection of thermally driven fluctuating macromolecules--a genetically programmed chemical machine.
活细胞中的生化系统和过程通常在远离平衡的状态下运行。本综述概述了对此类系统的统计热力学处理方法,并列举了细胞信号转导中几个关键组分的例子。介绍了开放系统非平衡稳态(NESS)模型。这些模型定量地解释了磷酸化-去磷酸化开关、GTP酶定时器以及通过动力学校对实现的特异性放大过程中的能量学和热力学。由ATP和GTP水解产生的化学能建立了细胞的非平衡稳态,并使细胞——一个由热驱动的波动大分子集合组成的介观生化反应系统——成为一个基因编程的化学机器。