Suppr超能文献

巨核细胞系起源于成血管细胞前体,是原始造血和定形造血的一个组成部分。

The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis.

作者信息

Tober Joanna, Koniski Anne, McGrath Kathleen E, Vemishetti Radhika, Emerson Rachael, de Mesy-Bentley Karen K L, Waugh Richard, Palis James

机构信息

Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, NY 14642, USA.

出版信息

Blood. 2007 Feb 15;109(4):1433-41. doi: 10.1182/blood-2006-06-031898. Epub 2006 Oct 24.

Abstract

In the adult, platelets are derived from unipotential megakaryocyte colony-forming cells (Meg-CFCs) that arise from bipotential megakaryocyte/erythroid progenitors (MEPs). To better define the developmental origin of the megakaryocyte lineage, several aspects of megakaryopoiesis, including progenitors, maturing megakaryocytes, and circulating platelets, were examined in the murine embryo. We found that a majority of hemangioblast precursors during early gastrulation contains megakaryocyte potential. Combining progenitor assays with immunohistochemical analysis, we identified 2 waves of MEPs in the yolk sac associated with the primitive and definitive erythroid lineages. Primitive MEPs emerge at E7.25 along with megakaryocyte and primitive erythroid progenitors, indicating that primitive hematopoiesis is bilineage in nature. Subsequently, definitive MEPs expand in the yolk sac with Meg-CFCs and definitive erythroid progenitors. The first GP1bbeta-positive cells in the conceptus were identified in the yolk sac at E9.5, while large, highly reticulated platelets were detected in the embryonic bloodstream beginning at E10.5. At this time, the number of megakaryocyte progenitors begins to decline in the yolk sac and expand in the fetal liver. We conclude that the megakaryocyte lineage initially originates from hemangioblast precursors during early gastrulation and is closely associated both with primitive and with definitive erythroid lineages in the yolk sac prior to the transition of hematopoiesis to intraembryonic sites.

摘要

在成年人中,血小板来源于单能巨核细胞集落形成细胞(Meg-CFCs),而这些细胞源自双能巨核细胞/红系祖细胞(MEPs)。为了更好地确定巨核细胞系的发育起源,我们在小鼠胚胎中研究了巨核细胞生成的几个方面,包括祖细胞、成熟的巨核细胞和循环中的血小板。我们发现,原肠胚形成早期的大多数成血管细胞前体都具有巨核细胞生成潜力。通过将祖细胞分析与免疫组织化学分析相结合,我们在卵黄囊中鉴定出与原始和定型红系谱系相关的两波MEPs。原始MEPs在E7.25时与巨核细胞和原始红系祖细胞一起出现,这表明原始造血本质上是双谱系的。随后,定型MEPs在卵黄囊中与Meg-CFCs和定型红系祖细胞一起扩增。在E9.5时,在卵黄囊中鉴定出胚胎中首个GP1bbeta阳性细胞,而在E10.5时开始在胚胎血流中检测到大型、高度网状的血小板。此时,巨核细胞祖细胞的数量在卵黄囊中开始减少,而在胎儿肝脏中开始增加。我们得出结论,巨核细胞系最初起源于原肠胚形成早期的成血管细胞前体,并且在造血向胚胎内部位转变之前,在卵黄囊中与原始和定型红系谱系密切相关。

相似文献

2
Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse.
Development. 1999 Nov;126(22):5073-84. doi: 10.1242/dev.126.22.5073.
3
Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb.
Blood. 2008 Mar 1;111(5):2636-9. doi: 10.1182/blood-2007-11-124685. Epub 2008 Jan 3.
4
Megakaryocyte production is sustained by direct differentiation from erythromyeloid progenitors in the yolk sac until midgestation.
Immunity. 2021 Jul 13;54(7):1433-1446.e5. doi: 10.1016/j.immuni.2021.04.026. Epub 2021 May 31.
7
Hematopoiesis in the yolk sac: more than meets the eye.
Exp Hematol. 2005 Sep;33(9):1021-8. doi: 10.1016/j.exphem.2005.06.012.
8
Evidence for the presence of murine primitive megakaryocytopoiesis in the early yolk sac.
Blood. 2001 Apr 1;97(7):2016-22. doi: 10.1182/blood.v97.7.2016.
9
Analysis of hematopoietic progenitors in the mouse embryo.
Methods Mol Med. 2005;105:289-302. doi: 10.1385/1-59259-826-9:289.

引用本文的文献

1
Placental Vascular Defects and Embryonic Lethality Triggered by TFPIα Deficiency in Factor V Leiden Mice.
Arterioscler Thromb Vasc Biol. 2025 Jul;45(7):1266-1276. doi: 10.1161/ATVBAHA.125.322650. Epub 2025 May 22.
2
Mutual Regulation of Cardiovascular and Hematopoietic Development.
Curr Cardiol Rep. 2025 Apr 22;27(1):86. doi: 10.1007/s11886-025-02236-5.
3
Shaping immunity: the influence of the maternal gut bacteria on fetal immune development.
Semin Immunopathol. 2025 Feb 1;47(1):13. doi: 10.1007/s00281-025-01039-8.
5
A subset of megakaryocytes regulates development of hematopoietic stem cell precursors.
EMBO J. 2024 May;43(9):1722-1739. doi: 10.1038/s44318-024-00079-4. Epub 2024 Apr 5.
6
Hematopoietic Stem Cell Development in Mammalian Embryos.
Adv Exp Med Biol. 2023;1442:1-16. doi: 10.1007/978-981-99-7471-9_1.
8
Exploring the Molecular and Developmental Dynamics of Endothelial Cell Differentiation.
Int J Stem Cells. 2024 Feb 28;17(1):15-29. doi: 10.15283/ijsc23086. Epub 2023 Oct 26.
10
Engineered hematopoietic and immune cells derived from human pluripotent stem cells.
Exp Hematol. 2023 Nov;127:14-27. doi: 10.1016/j.exphem.2023.08.006. Epub 2023 Aug 22.

本文引用的文献

1
Hematopoietic Development of ES Cells in Culture.
Methods Mol Med. 2002;63:209-30. doi: 10.1385/1-59259-140-X:209.
3
"Maturational" globin switching in primary primitive erythroid cells.
Blood. 2006 Feb 15;107(4):1665-72. doi: 10.1182/blood-2005-08-3097. Epub 2005 Nov 1.
4
Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1.
Blood. 2006 Jan 1;107(1):87-97. doi: 10.1182/blood-2005-07-2740. Epub 2005 Sep 6.
5
Hematopoiesis in the yolk sac: more than meets the eye.
Exp Hematol. 2005 Sep;33(9):1021-8. doi: 10.1016/j.exphem.2005.06.012.
6
Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1.
Nat Genet. 2005 Jun;37(6):613-9. doi: 10.1038/ng1566. Epub 2005 May 15.
8
GATA1 in normal and malignant hematopoiesis.
Semin Cell Dev Biol. 2005 Feb;16(1):137-47. doi: 10.1016/j.semcdb.2004.11.002. Epub 2004 Dec 13.
9
Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish.
Dev Cell. 2005 Jan;8(1):97-108. doi: 10.1016/j.devcel.2004.11.014.
10
Haemangioblast commitment is initiated in the primitive streak of the mouse embryo.
Nature. 2004 Dec 2;432(7017):625-30. doi: 10.1038/nature03122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验